[1] There is widespread evidence indicating that faults regain a portion of their strength during the interseismic period. Here, we present experiments designed to understand and quantify the interseismic cohesive strengthening resulting from fluid-rock reactions in fault zones. The triaxial experiments consisted of fracturing cores of Fontainebleau sandstone under dry conditions, forming a localized shear failure zone (stage 1). The specimens were then reacted hydrothermally under isostatic conditions, allowing the fault damage zone to compact, consolidate and strengthen (stage 2). Following reaction, the specimens were then reloaded to failure under nominally dry conditions, so that the increase in cohesive strength of the fault could be measured (stage 3). Experiments show that cohesion increase is positively correlated to temperature and pore pressure during reaction. After 6 hours of reaction at the highest temperatures (927°C) and pore pressures (200 MPa), cohesion increases by as much as 35 MPa. Microstructural examination of the specimens showed that the gouge particles within the fault compacted and cemented together, exhibiting textures typical of pressure solution and that fractures in the surrounding damage zone had healed. A theoretical treatment of the data was conducted using these experiments in combination with results on time-dependent changes in fault cohesion presented by Tenthorey et al. (2003). We find that the rate-controlling process in our experiments has an activation energy (Q) of approximately 70 kJ mol À1. We use this information to develop a model for time-dependent cohesive strengthening in fault zones within the continental seismogenic regime. We conclude that significant cohesive strengthening of fault zones can occur during the interseismic period of medium to large earthquakes given the presence of reactive pore fluids.
Abstract. During burial and diagenesis of granular aggregates, significant permeability reduction may be induced by the formation of low-temperature, authigenic minerals. To quantitatively assess the importance of this process, we have conducted a series of hydrothermal flow-through experiments using deionized water and labradorite/quartz sand. All experiments were conducted in a modified triaxial apparatus, configured to allow continuous permeability measurements.Under most of the conditions tested, significant permeability reduction is observed with no concurrent decrease in porosity. The overall permeability reduction sometimes exceeds I order of magnitude over 4 days and is positively correlated to temperature and deviatoric stress. Scanning electron microscope observations together with data from additional experiments show that the observed permeability reduction is entirely a result of secondary mineral growth. Si and A1 concentrations in the postexperiment fluids are also correlated to temperature and stress, confirming the link between the chemical state of the system and permeability behavior. In all experiments, permeability reduction is fastest early and levels off in the late stages. To explain the permeability behavior as a function of time, a conceptual model is developed in which precipitation of authigenic minerals is rapid at early times while dissolution of quartz and labradorite is most active. As the system approaches equilibrium, the components necessary for secondary mineral formation are liberated at a lower rate, thereby causing precipitation to slow. Although authigenic mineral formation does not reduce total pore space in these experiments, there is a reduction in effective porosity, which results in pccrneability reduction.
[1] The permeability (k) of fine-grained quartz aggregates were measured in situ during hot pressing (HPing) experiments to explore the evolution of fluid transport properties of fault zones during the interseismic period. Experiments were conducted at temperatures of 150°C and between 700 and 850°C, with confining and pore water pressures of 250 and 150 MPa, respectively. Significant permeability reduction was observed between 700 and 850°C, with permeability reduction rates (r = (1/t) ln (k to /k t )), ranging from approximately 6 Â 10 À5 s À1 at 700°C to a maximum of approximately 7.4 Â 10 À4 s À1 at 850°C. Permeability decreased exponentially with time, and the permeability reduction rate increased with increasing temperature, increasing differential stress, and decreasing grain size. Analysis of the permeability-porosity relationships indicates that permeability in the simulated gouge at high temperature shuts off at a critical porosity of 0.045 ± 0.004. The presence of microstructures, such as grain interpenetration, grain shape truncation, arrays of fluid inclusions, and development of quartz overgrowths on grains, indicate that k reduction was controlled by dissolution-precipitation creep processes. Extrapolation of the permeability reduction rates, measured in this study, to temperatures typical of the continental seismogenic regime highlights the strongly time-dependent nature of permeability in natural fault wear products at depths of nucleation of major earthquakes. Within the recurrence time of large earthquakes, quartz-rich fault zones in the fluid-active midcrustal to lower continental crustal regimes can evolve from high-permeability conduits to low-permeability seals. Episodic changes in the fluid transport properties of faults during the interseismic period are likely to impact on the pore pressure evolution of fault wear products.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.