Epithelial-mesenchymal transition (EMT) is a cellular process during which epithelial cells acquire mesen chymal phenotypes and behaviour following the down regulation of epithelial features. EMT is triggered in response to signals that cells receive from their micro environment. The epithelial state of the cells in which EMT is initiated is characterized by stable epithelial cell-cell junctions, apical-basal polarity and interac tions with basement membrane. During EMT, changes in gene expression and posttranslational regulation mechanisms lead to the repression of these epithelial characteristics and the acquisition of mesenchymal char acteristics. Cells then display fibroblastlike morphol ogy and cytoarchitecture, as well as increased migratory capacity. Furthermore, these now migratory cells often acquire invasive properties (Fig. 1). EMT was first described by researchers studying early embryogenesis as a programme with welldefined cellular features 1,2. It is now widely accepted that EMT occurs normally during early embryonic development, to enable a variety of morphogenetic events, as well as later in development and during wound healing in adults.
SummaryDirectional collective migration is now a widely recognized mode of migration during embryogenesis and cancer. However, how a cluster of cells responds to chemoattractants is not fully understood. Neural crest cells are among the most motile cells in the embryo, and their behavior has been likened to malignant invasion. Here, we show that neural crest cells are collectively attracted toward the chemokine Sdf1. While not involved in initially polarizing cells, Sdf1 directionally stabilizes cell protrusions promoted by cell contact. At this cell contact, N-cadherin inhibits protrusion and Rac1 activity and in turn promotes protrusions and activation of Rac1 at the free edge. These results show a role for N-cadherin during contact inhibition of locomotion, and they reveal a mechanism of chemoattraction likely to function during both embryogenesis and cancer metastasis, whereby attractants such as Sdf1 amplify and stabilize contact-dependent cell polarity, resulting in directional collective migration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.