Adding impedance to pH monitoring improves the diagnostic yield and allows better symptom analysis than pHmetry alone, mainly in patients on PPI therapy. The impact of this improved diagnostic value on gastroesophageal reflux disease management remains to be investigated by outcome studies.
SUMMARYBackground: Impedance-pH monitoring is the most sensitive method for detection and characterization of gastro-oesophageal reflux episodes. Normal values from European subjects are lacking. Aim: To build a database of gastro-oesophageal reflux patterns from French and Belgian healthy subjects. Methods: Seventy-two healthy subjects (35 men, mean age 35 years, 18-72) underwent 24-h ambulatory impedance-pH studies. Gastro-oesophageal reflux episodes were detected using impedance and characterized by pH as acid, weakly acidic, or weakly alkaline. Analysis was performed visually and effects of age, gender and intra-individual reproducibility were evaluated. Results: The total number of gastro-oesophageal reflux episodes was 44 (25,58,75) of which 59% were acid,
Inhibitory patterns of repetitive transcranial magnetic stimulation (rTMS) were applied to pharyngeal motor cortex in order to establish its role in modulating swallowing activity and provide evidence for functionally relevant hemispheric asymmetry. Healthy volunteers underwent single pulse TMS before and for 60 min after differing intensities of 1 Hz rTMS (n = 9, 6 male, 3 female, mean age 34 ± 3 years) or theta burst stimulation (TBS) (n = 9, 6 male, 3 female, mean age 37 ± 4 years). Electromyographic responses recorded from pharynx and hand were used as a measure of cortico-motor pathway excitability. Swallowing behaviour was then examined with a reaction time protocol, before and for up to 60 min after the most effective inhibitory protocol (1 Hz) applied to each hemisphere. Interventions were conducted on separate days and compared to sham using ANOVA. Only high intensity 1 Hz rTMS consistently suppressed pharyngeal motor cortex immediately and for up to 45 min (−34 ± 7%, P ≤ 0.001). Adjacent hand and contralateral pharyngeal motor cortex showed no change in response (−15 ± 12%, P = 0.14 and 15 ± 12%, P = 0.45, respectively). When used to unilaterally disrupt each hemisphere, rTMS to pharyngeal motor cortex with the stronger responses altered normal (−12 ± 3%, P ≤ 0.001) and fast (−9 ± 4%, P ≤ 0.009) swallow times, not seen following rTMS to the contralateral cortex or after sham. Thus, suppression of pharyngeal motor cortex to rTMS is intensity and frequency dependent, which when applied to each hemisphere reveals functionally relevant asymmetry in the motor control of human swallowing.
Post-stroke dysphagia (PSD) is present in more than 50 % of acute stroke patients, increases the risk of complications, in particular aspiration pneumonia, malnutrition and dehydration, and is linked to poor outcome and mortality. The aim of this guideline is to assist all members of the multidisciplinary team in their management of patients with PSD. These guidelines were developed based on the European Stroke Organisation (ESO) standard operating procedure and followed the Grading of Recommendations, Assessment, Development, and Evaluation (GRADE) approach. An interdisciplinary working group identified 20 relevant questions, performed systematic reviews and meta-analyses of the literature, assessed the quality of the available evidence, and wrote evidence-based recommendations. Expert opinion was provided if not enough evidence was available to provide recommendations based on the GRADE approach. We found moderate quality of evidence to recommend dysphagia screening in all stroke patients to prevent post-stroke pneumonia and decrease risk of early mortality and low quality of evidence to suggest dysphagia assessment in stroke patients having been identified at being at risk of PSD. We found low to moderate quality of evidence for a variety of treatment options to improve swallowing physiology and swallowing safety. These options include dietary interventions, behavioral swallowing treatment including acupuncture, nutritional interventions, oral health care, different pharmacological agents and different types of neurostimulation treatment. Some of the studied interventions also had an impact on other clinical endpoints such as feedings status or pneumonia. Overall, further randomised trials are needed to improve the quality of evidence for the treatment of PSD.
Oropharyngeal dysphagia is frequent in stroke patients and increases mortality, mainly because of pulmonary complications. We hypothesized that sensitive transcutaneous electrical stimulation applied submentally during swallowing could help rehabilitate post-stroke oropharyngeal dysphagia by improving cortical sensory motor circuits. Eleven patients were recruited for the study (5 females, 68 ± 11 years). They all suffered from recent oropharyngeal dysphagia (>eight weeks) induced by a hemispheric (n = 7) or brainstem (n = 4) stroke, with pharyngeal residue and/or laryngeal aspiration diagnosed by videofluoroscopy. Submental electrical stimulations were performed for 1 h every day for 5 days (electrical trains: 5 s every minute, 80 Hz, under motor threshold). During the electrical stimulations, the patients were asked to swallow one teaspoon of paste or liquid. Swallowing was evaluated before and after the week of stimulations using a dysphagia handicap index questionnaire, videofluoroscopy, and cortical mapping of pharyngeal muscles. The results of the questionnaire showed that oropharyngeal dysphagia symptoms had improved (p < 0.05), while the videofluoroscopy measurements showed that laryngeal aspiration (p < 0.05) and pharyngeal residue (p < 0.05) had decreased and that swallowing reaction time (p < 0.05) had improved. In addition, oropharyngeal transit time, pharyngeal transit time, laryngeal closure duration, and cortical pharyngeal muscle mapping after the task had not changed. These results indicated that sensitive submental electrical stimulations during swallowing tasks could help to rehabilitate post-stroke swallowing dysphagia by improving swallowing coordination. Plasticity of the sensory swallowing cortex is suspected.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.