(1) The preclinical focus on the behavioral characteristics and determinants of intense aggression promises to be most relevant to the clinical distinction between the proposed impulsive-reactive-hostile-affective subtypes of human aggression and the controlled-proactive-instrumental-predatory subtypes of aggression. The neural circuits for many types of human and animal aggression critically involve serotonin, dopamine and gamma-aminobutyric acid (GABA) and specific receptor subtypes. (2) The dynamic changes in frontal cortical serotonin that are triggered by engaging in aggressive behavior imply that serotonergic drug effects are largely determined by the functional state of the receptors at the time of drug treatment. Of the numerous 5-HT receptors currently identified, the 5-HT(1B) receptors offer a promising target for reducing impulsive aggressive behavior, particularly if the action can be limited to sites in the central nervous system. (3) Aggressive confrontations are salient stressors, both for the aggressor as well as the victim of aggression, that are accompanied by activation of the mesocorticolimbic but not the striatal dopamine system. Dopaminergic manipulations, particularly targeting the D(2) receptor family, can influence aggressive behavior in animals and human patients, suggesting that mesocorticolimbic dopamine may have important enabling or permissive functions. (4) GABA is critical in the neurochemical control of aggressive behavior as evidenced by studies that directly modify GABAergic neurotransmission and neurochemical studies that correlate GABA measurements with aggressive behavioral responses in several animal species. The GABA(A) receptor complex is a mechanism through which certain benzodiazepines and alcohol enhance and inhibit aggressive behaviors. Social and pharmacological experiences decisively determine the effects of GABAergic positive modulators on aggression.
Early life experiences shape an individual's physical and mental health across the lifespan. Not surprisingly, an upbringing that is associated with adversity can produce detrimental effects on health. A central theme that arises from studies in human and nonhuman species is that the effects of adversity are mediated by the interactions between a mother and her young. In this review we describe some of the long-term effects of maternal care on the offspring and we focus on the impact of naturally occurring variations in the behavior of female rats. Of particular interest are mothers that engage in high or low amounts of licking/grooming (LG) and arched-back nursing (ABN) of their pups, but do so within the normal range for this species. Such variations in LG-ABN can alter the function of the hypothalamic-pituitary-adrenal (HPA) axis, and cognitive and emotional development by directly affecting the underlying neural mechanisms. At the heart of these mechanisms is gene expression. By studying the hippocampal glucocorticoid receptor gene, we have identified that maternal care regulates its expression by changing two processes: the acetylation of histones H3-K9, and the methylation of the NGFI-A consensus sequence on the exon 1(7) promoter. Sustained "maternal effects" appear elsewhere in biology, including plants, insects, and lizards, and may have evolved to program advantages in the environments that the offspring will likely face as adults. Given the importance of early life and parent-child interactions to later behavior, prevention and intervention programs should target this critical phase of development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations鈥揷itations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.