Tissue transglutaminase (TG2) is a multifunctional protein that plays biological roles based on its ability to catalyse protein cross-linking and to function as a non-canonical G-protein known as Ghα. The...
Type 2 transglutaminase (TG2) functions as an important cancer cell survival protein in a range of cancers including epidermal squamous cell carcinoma. TG2 exists in open and closed conformations each of which has a distinct and mutually exclusive activity. The closed conformation has GTP-binding/GTPase activity while the open conformation functions as a transamidase to catalyze protein-protein crosslinking.GTP-binding/GTPase activity is required for TG2 maintenance of the aggressive cancer phenotype. Thus, identifying agents that convert TG2 from the closed to the open GTP-binding/GTPase inactive conformation is an important cancer prevention/treatment strategy. Sulforaphane (SFN) is an important diet-derived cancer prevention agent that is known to possess a reactive isothiocyanate group and has potent anticancer activity. Using a biotin-tagged SFN analog (Biotin-ITC) and kinetic analysis we show that SFN covalently and irreversibly binds to recombinant TG2 to inhibit transamidase activity and shift TG2 to an open/extended conformation, leading to a partial inhibition of GTP binding. We also show that incubation of cancer cells or cancer cell extract with Biotin-ITC results in formation of a TG2/Biotin-ITC complex and that SFN treatment of cancer cells inhibits TG2 transamidase activity and shifts TG2 to an open/extended conformation. These findings identify TG2 as a direct SFN anticancer target in epidermal squamous cell carcinoma.
Transglutaminase 2 (TG2), also referred to as tissue transglutaminase, is an enzyme that plays crucial roles in both protein crosslinking and cell signalling. It is capable of both catalysing transamidation...
Transglutaminase 2 (TG2) is a multifunctional enzyme primarily responsible for crosslinking proteins. Ubiquitously expressed in humans, TG2 can act either as a transamidase by crosslinking two substrates through formation of an Nε(ɣ-glutaminyl)lysine bond or as an intracellular G-protein. These discrete roles are tightly regulated by both allosteric and environmental stimuli and are associated with dramatic changes in the conformation of the enzyme. The pleiotropic nature of TG2 and multi-faceted activities have resulted in TG2 being implicated in numerous disease pathologies including celiac disease, fibrosis, and cancer. Targeted TG2 therapies have not been selective for subcellular localization, such that currently no tools exist to selectively target extracellular over intracellular TG2. Herein, we have designed novel TG2-selective inhibitors that are not only highly potent and irreversible, but also cell impermeable, targeting only extracellular TG2. We have also further derivatized the scaffold to develop probes that are intrinsically fluorescent or bear an alkyne handle, which target both intra- and extracellular TG2, in order to facilitate cellular labelling and pull-down assays. The fluorescent probes were internalized and imaged in cellulo, and provide the first implicit experimental evidence that by comparison with their cell-impermeable analogues, it is specifically intracellular TG2, and presumably its G-protein activity, that contributes to transglutaminase-associated cancer progression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.