The partly dolomitized Swan Hills Formation (Middle‐Upper Devonian) in the Simonette oil field of west‐central Alberta underwent a complex diagenetic history, which occurred in environments ranging from near surface to deep (>2500 m) burial. Five petrographically and geochemically distinct dolomites that include both cementing and replacive varieties post‐date stylolites in limestones (depths >500 m). These include early planar varieties and later saddle dolomites. Fluid inclusion data from saddle dolomite cements (Th=137–190 °C) suggest that some precipitated at burial temperatures higher than the temperatures indicated by reflectance data (Tpeak=160 °C). Thus, at least some dolomitizing fluids were ‘hydrothermal’. Fluorescence microscopy identified three populations of primary hydrocarbon‐bearing fluid inclusions and confirms that saddle dolomitization overlapped with Upper Cretaceous oil migration. The source of early dolomitizing fluids probably was Devonian or Mississippian seawater that was mixed with a more 87Sr‐rich fluid. Fabric‐destructive and fabric‐preserving dolostones are over 35 m thick in the Swan Hills buildup and basal platform adjacent to faults, thinning to less than 10 cm thick in the buildup between 5 and 8 km away from the faults. This ‘plume‐like’ geometry suggests that early and late dolomitization events were fault controlled. Late diagenetic fluids were, in part, derived from the crystalline basement or Palaeozoic siliciclastic aquifers, based on 87Sr/86Sr values up to 0·7370 from saddle dolomite, calcite and sphalerite cements, and 206Pb/204Pb of 22·86 from galena samples. Flow of dolomitizing and mineralizing fluids occurred during burial greater than 500 m, both vertically along reactivated faults and laterally in the buildup along units that retained primary and/or secondary porosity.
Carbonate platforms can commonly keep up with relative sea-level rise because of high rates of sediment accumulation and platform aggradation. Surrounding basinal environments are commonly starved but can receive variable extrabasinal siliciclastic input and episodically deposited carbonate sediment. If accumulation rates in basinal settings lag behind those of the platform, a bypass or erosional margin can develop. Under these circumstances platform and basin depositional sequences become physically detached and direct correlation of basinal and platform sequences is hindered.We report here the results of high-resolution stratigraphic analyses of two Upper Devonian isolated carbonate platforms in western Alberta that provide insight into the sequence stratigraphy of bypass margins and criteria for accurate correlation of platform and basinal sequences. The slope and basin sequences surrounding the Miette and Ancient Wall platforms consist of basin-restricted, onlapping wedges of fine-grained background sediment deposited dominantly from suspension and coarse-grained platform-derived sediment redeposited by a variety of gravity-flow mechanisms. Sequence boundaries are identified within the redeposited carbonate intervals. Identification of sequence boundaries and differentiation of highstand and lowstand slope and basinal facies was based on the geometry, mineralogy, and clast content of redeposited carbonate units. Highstand carbonates contain sheet-like debris flows and turbidites with abundant slope-derived clasts and background facies with high total carbonate content. Lowstand carbonates contain sheet-like and channelized debris flows and turbidites with abundant platform-derived clasts and background facies with low carbonate content and locally high amounts of organic carbon. Transgressive facies are dominated by initially carbonate-poor and organic-rich background sediments that display a progressive increase in carbonate content and decrease in organic carbon content. These patterns are interpreted to record abundant background carbonate sedimentation during late transgression and highstand when the carbonate factory was robust. Highstand redeposited carbonates record slope erosion due to oversteepening and slope readjustment processes. Lowstand redeposited carbonates indicate platform and platform-margin erosion and low background carbonate sedimentation when the platform was either exposed or under very shallow peritidal conditions. High siliciclastic and organic contents during lowstand and early transgression may partly be the result of reciprocal sedimentation but alternatively may represent continuous siliciclastic supply during times with little dilution by fine-grained carbonate sediment.Successive stages of platform development at Miette and Ancient Wall were controlled by accommodation changes driven by relative sea-level fluctuations. Backstripping analyses of strata from both platforms confirm that significant differential subsidence was a major control on variations in platform thickness and...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.