Colorectal cancer (CRC) is a leading cause of cancer related death in Europe and the USA. There is no universally accepted effective non-invasive screening test for CRC. Guaiac based faecal occult blood (gFOB) testing has largely been superseded by Faecal Immunochemical testing (FIT), but sensitivity still remains poor. The uptake of population based FOBt testing in the UK is also low at around 50%. The detection of volatile organic compounds (VOCs) signature(s) for many cancer subtypes is receiving increasing interest using a variety of gas phase analytical instruments. One such example is FAIMS (Field Asymmetric Ion Mobility Spectrometer). FAIMS is able to identify Inflammatory Bowel disease (IBD) patients by analysing shifts in VOCs patterns in both urine and faeces. This study extends this concept to determine whether CRC patients can be identified through non-invasive analysis of urine, using FAIMS. 133 patients were recruited; 83 CRC patients and 50 healthy controls. Urine was collected at the time of CRC diagnosis and headspace analysis undertaken using a FAIMS instrument (Owlstone, Lonestar, UK). Data was processed using Fisher Discriminant Analysis (FDA) after feature extraction from the raw data. FAIMS analyses demonstrated that the VOC profiles of CRC patients were tightly clustered and could be distinguished from healthy controls. Sensitivity and specificity for CRC detection with FAIMS were 88% and 60% respectively. This study suggests that VOC signatures emanating from urine can be detected in patients with CRC using ion mobility spectroscopy technology (FAIMS) with potential as a novel screening tool.
Coeliac disease (CD), a T-cell-mediated gluten sensitive enteropathy, affects ∼1% of the UK population and can present with wide ranging clinical features, often being mistaken for Irritable Bowel Syndrome (IBS). Heightened clinical awareness and serological screening identifies those with potential coeliac disease; the diagnosis is confirmed with duodenal biopsies, and symptom improvement with a gluten-free diet. Limitations to diagnosis are false negative serology and reluctance to undergo biopsy. The gut microbiome is altered in several gastrointestinal disorders, causing altered gut fermentation patterns recognisable by volatile organic compounds (VOC) analysis in urine, breath and faeces. We aimed to determine if CD alters the urinary VOC pattern, distinguishing it from IBS. 47 patients were recruited, 27 with established CD, on gluten free diets, and 20 with diarrhoea-predominant IBS (D-IBS). Collected urine was stored frozen in 10 ml aliquots. For assay, the specimens were heated to 40±0.1°C and the headspace analysed by Field Asymmetric Ion Mobility Spectrometry (FAIMS). Machine learning algorithms were used for statistical evaluation. Samples were also analysed using Gas chromatography and mass spectroscopy (GC-MS). Sparse logistic regression showed that FAIMS distinguishes VOCs in CD vs D-IBS with ROC curve AUC of 0.91 (0.83–0.99), sensitivity and specificity of 85% respectively. GCMS showed a unique peak at 4′67 found only in CD, not D-IBS, which correlated with the compound 1,3,5,7 cyclooctatetraene. This study suggests that FAIMS offers a novel, non-invasive approach to identify those with possible CD, and distinguishes from D-IBS. It offers the potential for monitoring compliance with a gluten-free diet at home. The presence of cyclooctatetraene in CD specimens will need further validation.
Bile acid diarrhoea (BAD) is a common disease that requires expensive imaging to diagnose. We have tested the efficacy of a new method to identify BAD, based on the detection of differences in volatile organic compounds (VOC) in urine headspace of BAD vs. ulcerative colitis and healthy controls. A total of 110 patients were recruited; 23 with BAD, 42 with ulcerative colitis (UC) and 45 controls. Patients with BAD also received standard imaging (Se75HCAT) for confirmation. Urine samples were collected and the headspace analysed using an AlphaMOS Fox 4000 electronic nose in combination with an Owlstone Lonestar Field Asymmetric Ion Mobility Spectrometer (FAIMS). A subset was also tested by gas chromatography, mass spectrometry (GCMS). Linear Discriminant Analysis (LDA) was used to explore both the electronic nose and FAIMS data. LDA showed statistical differences between the groups, with reclassification success rates (using an n-1 approach) at typically 83%. GCMS experiments confirmed these results and showed that patients with BAD had two chemical compounds, 2-propanol and acetamide, that were either not present or were in much reduced quantities in the ulcerative colitis and control samples. We believe that this work may lead to a new tool to diagnose BAD, which is cheaper, quicker and easier that current methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.