An agent population can be evolved in a complex environment to perform various tasks and optimize its job performance using Learning Classifier System (LCS) technology. Due to the complexity and knowledge content of some real-world systems, having the ability to use genetic programming, GP, to represent the LCS rules provides a great benefit. Methods have been created to extend LCS theory into operation across the power-set of GP-enabled rule content. This system uses a full bucketbrigade system for GP-LCS learning. Using GP in the LCS system allows the functions and terminals of the actual problem environment to be used internally directly in the rule set, enabling more direct interpretation of the operation of the LCS system. The system was designed and built, and underwent independent testing at an advanced technology research laboratory. This paper describes the top-level operation of the system, and includes some of the results of the testing effort, and performance figures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.