Direct bonding of copper and porous LaCrO3 without an extra filler interlayer was successfully completed using local and fast Cu‐infiltration through laser cladding. This significantly reduced the susceptibility of the ceramic to cracking. A high‐speed camera investigation into the wetting and infiltration behavior of a Cu‐melt into LaCrO3 with a porosity of ~63 vol% was performed. By adjusting the focal distance with a constant laser power of 300 W, the Cu‐melt was rapidly infiltrated into the ceramic preform in 10 seconds. This was completed under atmospheric air conditions, without added inert gas. The joining process developed can be used to fabricate ceramic/metal joints with targeted (micro‐) structure properties by adjusting the infiltrated melt and the infiltration depth, which would be suitable for many applications, such as multifunctional devices, solid oxide fuel cells or heating elements.
This work presents a comparative study of thermal conditions that occur during laser beam welding of high strength steel 100Cr6 that often leads to a loss of technological strength and may conditionally produce cold cracks. The results from both experiments and thermal-metallurgical FE-simulations indicate that the type of heat coupling changes significantly when welding with different process parameters, e.g., in the transition between conduction and deep penetration welding. Further, the simulations show that as a result of the high welding speeds and reduced energy per unit length, extremely high heating rates of up to 2x104 K s-1 (set A) resp. 4x105 K s-1 (set B) occur in the material. Both welds thus concern a range of values for which conventional Time-Temperature-Austenitization (TTA) diagrams are not currently defined, so that the material models can only be calibrated using general assumptions. This noted change in energy per unit length and welding speeds causes significantly steep temperature gradients with a slope of approximately 5x103 K mm-1 and strong drops in the heating and cooling rates, particularly in the heat affected zone near the weld metal. This means that even short distances along the length present a staggering difference in relation to the temperature peaks. The temperature cycles also show very different cooling rates for the respective parameter sets, although in both cases they are well below a cooling time t8/5 of one second, so that the phase transformation always leads to the formation of martensite. The results from this study are intended to be used for further detailed experimental and numerical investigation of microstructure, hydrogen distribution, and stress-strain development at different restrain conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.