Cameroon through its Strategy for Growth and Employment (DSCE), has set up the construction of the Yaoundé-Nsimalen highway project. As part of the assessments of its potential effects on the environment, an ESIA was carried out, according to the framework law on the management of the environment. The acquisition of housing has resulted in an '' anarchic '' installation in the urban and peri-urban area. The construction of a highway as planned overlays on these facilities and poses a problem related to the liberation of spaces previously occupied. The purpose of this study is to identify, locate and classify the impacted goods by the highway construction project through Geographic Information Systems (GIS). Our methodology consisted first, making a satellite identification of the impacted goods, then a field campaign and finally a processing of the data collected. This study was also limited to the identification of two types of property, the buildings and parcels of land. Thus, it has been possible to distinguish and locate six categories of buildings, eight categories of parcels of land defined according to the Cameroon law No. 85/009 of 04 July 1985 on the expropriation for public purpose and the terms of compensation and according to Order No. 0082 / y. 15.1 / MNUH / D of November 20, 1987 laying down the bases for calculating the market value of buildings expropriated for reasons of public utility. The result of this study shows that mapping is a very practical tool for identifying and materializing the impacts that a project may have on components of environment. The GIS revealed a potential disappearance of 1502 building spread over 867 parcels of land.
Résumé : Dans cet article, il est question d’évaluer la déforestation dans la périphérie Ouest de la réserve de Biosphère du Dja à travers les techniques de Télédétection et de Système d’Information Géographique. Pour cela, 08 images Landsat de date différentes (2011 à 2018) ont été utilisées pour produire les cartes d’occupation du sol, à travers la méthode de classification supervisée et l’algorithme « maximum likelihood ». Les classes d’occupation de sol retenues pour cette classification sont : forêt dense, forêt dégradée, zone de culture, zone marécageuse, zone d’habitation, sol nu et eau. L’analyse des changements a été faite avec la technique de « change detection ». Les résultats de cette étude ont montré que la déforestation a été importante pendant la période d’étude (2011 – 2018). Les surfaces forestières se sont principalement transformées en zone de culture, marécage, forêt dégradée, sol nu. Le taux de déforestation observé est de 6,8% et dénote une importante baisse du couvert forestier dense. L’étude a montré des tendances de déforestation dans cette périphérie. Elle a permis d’observer que les zones tendancieuses sont concentrées principalement autour de certaines activités anthropiques présentes dans cette zone (la plantation agricole SUDCAM, le barrage de Mekin, les lieux habités). Mots-clés : Déforestation, Changement climatique, forêt, tendances de déforestation, images satellites
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.