BackgroundJBrowse is a fast and full-featured genome browser built with JavaScript and HTML5. It is easily embedded into websites or apps but can also be served as a standalone web page.ResultsOverall improvements to speed and scalability are accompanied by specific enhancements that support complex interactive queries on large track sets. Analysis functions can readily be added using the plugin framework; most visual aspects of tracks can also be customized, along with clicks, mouseovers, menus, and popup boxes. JBrowse can also be used to browse local annotation files offline and to generate high-resolution figures for publication.ConclusionsJBrowse is a mature web application suitable for genome visualization and analysis.
Genome annotation is the process of identifying the location and function of a genome's encoded features. Improving the biological accuracy of annotation is a complex and iterative process requiring researchers to review and incorporate multiple sources of information such as transcriptome alignments, predictive models based on sequence profiles, and comparisons to features found in related organisms. Because rapidly decreasing costs are enabling an ever-growing number of scientists to incorporate sequencing as a routine laboratory technique, there is widespread demand for tools that can assist in the deliberative analytical review of genomic information. To this end, we present Apollo, an open source software package that enables researchers to efficiently inspect and refine the precise structure and role of genomic features in a graphical browser-based platform. Some of Apollo’s newer user interface features include support for real-time collaboration, allowing distributed users to simultaneously edit the same encoded features while also instantly seeing the updates made by other researchers on the same region in a manner similar to Google Docs. Its technical architecture enables Apollo to be integrated into multiple existing genomic analysis pipelines and heterogeneous laboratory workflow platforms. Finally, we consider the implications that Apollo and related applications may have on how the results of genome research are published and made accessible.
As one of the US Department of Agriculture—Agricultural Research Service flagship databases, GrainGenes (https://wheat.pw.usda.gov) serves the data and community needs of globally distributed small grains researchers for the genetic improvement of the Triticeae family and Avena species that include wheat, barley, rye and oat. GrainGenes accomplishes its mission by continually enriching its cross-linked data content following the findable, accessible, interoperable and reusable principles, enhancing and maintaining an intuitive web interface, creating tools to enable easy data access and establishing data connections within and between GrainGenes and other biological databases to facilitate knowledge discovery. GrainGenes operates within the biological database community, collaborates with curators and genome sequencing groups and contributes to the AgBioData Consortium and the International Wheat Initiative through the Wheat Information System (WheatIS). Interactive and linked content is paramount for successful biological databases and GrainGenes now has 2917 manually curated gene records, including 289 genes and 254 alleles from the Wheat Gene Catalogue (WGC). There are >4.8 million gene models in 51 genome browser assemblies, 6273 quantitative trait loci and >1.4 million genetic loci on 4756 genetic and physical maps contained within 443 mapping sets, complete with standardized metadata. Most notably, 50 new genome browsers that include outputs from the Wheat and Barley PanGenome projects have been created. We provide an example of an expression quantitative trait loci track on the International Wheat Genome Sequencing Consortium Chinese Spring wheat browser to demonstrate how genome browser tracks can be adapted for different data types. To help users benefit more from its data, GrainGenes created four tutorials available on YouTube. GrainGenes is executing its vision of service by continuously responding to the needs of the global small grains community by creating a centralized, long-term, interconnected data repository. Database URL:https://wheat.pw.usda.gov
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.