Mice with deficiency in tocopherol (alpha) transfer protein gene develop peripheral tocopherol deficiency and sensory neurodegeneration. Ttpa mice maintained on diets with deficient α-tocopherol (α-TOH) had proprioceptive deficits by six months of age, axonal degeneration and neuronal chromatolysis within the dorsal column of the spinal cord and its projections into the medulla. Transmission electron microscopy revealed degeneration of dorsal column axons. We addressed the potential pathomechanism of α-TOH deficient neurodegeneration by global transcriptome sequencing within the spinal cord and cerebellum. RNA-sequencing of the spinal cord in Ttpa mice revealed upregulation of genes associated with the innate immune response, indicating a molecular signature of microglial activation as a result of tocopherol deficiency. For the first time, low level Ttpa expression was identified in the murine spinal cord. Further, the transcription factor liver X receptor (LXR) was strongly activated by α-TOH deficiency, triggering dysregulation of cholesterol biosynthesis. The aberrant activation of transcription factor LXR suppressed the normal induction of the transcription factor retinoic-related orphan receptor-α (RORA), which is required for neural homeostasis. Thus we find that α-TOH deficiency induces LXR, which may lead to a molecular signature of microglial activation and contribute to sensory neurodegeneration.
SUMMARYBariatric surgery, such as vertical sleeve gastrectomy (VSG), causes high rates of type 2 diabetes remission and remarkable increases in postprandial glucagon-like peptide-1 (GLP-1) secretion. GLP-1 plays a critical role in islet function by potentiating glucose-stimulated insulin secretion; however, the mechanisms remain incompletely defined. Therefore, we applied a murine VSG model to an inducible β cell-specific GLP-1 receptor (GLP-1R) knockout mouse model to investigate the role of the β cell GLP-1R in islet function. Our data show that loss of β cell GLP-1R signaling decreases α cell GLP-1 expression after VSG. Furthermore, we find a β cell GLP-1R-dependent increase in α cell expression of the prohormone convertase required for the production of GLP-1 after VSG. Together, the findings herein reveal two concepts. First, our data support a paracrine role for α cell-derived GLP-1 in the metabolic benefits observed after VSG. Second, we have identified a role for the β cell GLP-1R as a regulator of α cell proglucagon processing.
Abstract. Choroid plexus neoplasms are uncommon brain tumors in dogs. Choroid plexus carcinomas often spread diffusely throughout the ventricular system and subarachnoid space and, in aggressive forms, can mimic histologic patterns of other carcinomas, including being embedded in a desmoplastic reaction. Although choroid plexus tumors (CPTs) heterogeneously express pan-cytokeratin, little is known about other markers to identify choroid plexus and their associated tumors. Kir7.1, an inward-rectifier potassium channel, is reported to have high diagnostic utility in human neuropathology to distinguish CPTs from other primary brain tumors and cerebral metastases. To determine Kir7.1 expression in the dog brain, we analyzed the immunoreactivity of Kir7.1 in normal brain, gliomas, ependymomas, CPTs, meningiomas, and carcinomas. In normal brain tissue, the immunostaining was restricted to the choroid plexus where there was robust membrane immunoreactivity along the apical border of the cells with less intense cytoplasmic staining. Similar strong immunoreactivity was detected in 12 of 12 CPTs, whereas 5 of 5 gliomas, 4 of 5 ependymomas, 5 of 5 meningiomas, and 5 of 6 carcinomas had no immunoreactivity. One ependymoma and 1 nasal carcinoma with squamous metaplasia were up to 75% immunopositive, with moderate cytoplasmic and membranous immunoreactivity, but lacking the robust apical immunoreactivity pattern. Analysis for immunoreactivity in a tissue microarray failed to yield any other locations in which immunoreactivity was detected. These results, including the distinctive pattern of immunostaining in CPTs, suggest that Kir7.1 is an excellent marker for CPTs in the dog.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.