Aging negatively impacts immunity, resulting in inefficient responses to vaccinations and infections. Fibroblastic reticular cells (FRCs) are the major stromal cell subset in lymph nodes (LNs) and play an intricate role in the orchestration and control of adaptive immune responses. Although stromal cells have a major impact on immune responses, the impact of aging on LN stromal cells remains unclear. Quantitative analysis of LN stromal cells by flow cytometry revealed that there are no significant differences in the number of stromal cells in young and aged LN at steady state but after influenza infection aged FRCs have delayed expansion as a result of reduced proliferation. Aged LNs also produce reduced levels of homeostatic chemokines, which correlates with reduced homing of naive T cells. Image analysis reveals that young and aged T-cell zone FRCs have similar morphology at steady state and after infection. Furthermore, aged FRCs did not appear to be a contributing factor in the reduced proliferation of young T cells transferred into aged LNs after influenza infection. These results demonstrate that aging alters LN stromal cell response to challenge and these age-related changes may be an underlying contributor to impaired immune responses in the elderly people.
Influenza and pneumonia are leading causes of death in elderly populations. With age, there is an increased inflammatory response and slower viral clearance during influenza infection which increases the risk of extended illness and mortality. Here we employ a preclinical murine model of influenza infection to examine the protective capacity of vaccination with influenza nucleoprotein (NP). While NP vaccination reduces influenza-induced lung inflammation in young mice, aged mice do not show this reduction, but are protected from influenza-induced mortality. Aged mice do make a significant amount of NP-specific IgG and adoptive transfer experiments show that NP antibody can protect from death but cannot reduce lung inflammation. Furthermore, young but not aged vaccinated mice generate significant numbers of NP-specific T cells following subsequent infection and few of these T cells are found in aged lungs early during infection. Importantly, aged CD4 T cells have a propensity to differentiate towards a T follicular helper (Tfh) phenotype rather than a T helper 1 (Th1) phenotype that predominates in the young. Since Th1 cells are important in viral clearance, reduced Th1 differentiation in the aged is critical and could account for some or all of the age-related differences in vaccine responses and infection resolution.
Elderly people are at high risk for influenza-related morbidity and mortality due to progressive immunosenescence. While toll-like receptor (TLR) agonist containing adjuvants, and other adjuvants, have been shown to enhance influenza vaccine-induced protective responses, the mechanisms underlying how these adjuvanted vaccines could benefit the elderly remain elusive. Here, we show that a split H1N1 influenza vaccine (sH1N1) combined with a TLR4 agonist, glucopyranosyl lipid adjuvant formulated in a stable oil-in-water emulsion (GLA-SE), boosts IgG2c:IgG1 ratios, enhances hemagglutination inhibition (HAI) titers, and increases protection in aged mice. We find that all adjuvanted sH1N1 vaccines tested were able to protect both young and aged mice from lethal A/H1N1/California/4/2009 virus challenge after two immunizations compared to vaccine alone. We show that GLA-SE combined with sH1N1, however, also provides enhanced protection from morbidity in aged mice given one immunization (based on change in weight percentage). While the GLA-SE-adjuvanted sH1N1 vaccine promotes the generation of cytokine-producing T helper 1 cells, germinal center B cells, and long-lived bone marrow plasma cells in young mice, these responses were muted in aged mice. Differential in vitro responses, dependent on age, were also observed from mouse-derived bone marrow-derived dendritic cells and lung homogenates following stimulation with adjuvants, including GLA-SE. Besides enhanced HAI titers, additional protective factors elicited with sH1N1 + GLA-SE in young mice were observed, including (a) rapid reduction of viral titers in the lung, (b) prevention of excessive lung inflammation, and (c) homeostatic maintenance of alveolar macrophages (AMs) following H1N1 infection. Collectively, our results provide insight into mechanisms of adjuvant-mediated immune protection in the young and elderly.
Aging and senescence impact CD4 T helper cell (Th) subset differentiation during influenza infection. In the lungs of infected aged mice, there were significantly greater percentages of Th cells expressing the transcription factor FoxP3, indicative of regulatory CD4 T cells (Treg), when compared to young. TGF‐beta levels, which drive FoxP3 expression, were also higher in the bronchoalveolar lavage of aged mice and blocking TGF‐beta reduced the percentage of FoxP3+ Th in aged lungs during influenza infection. Since TGF‐beta can be the product of senescent cells, these were targeted by treatment with senolytic drugs. Treatment of aged mice with senolytics prior to influenza infection restored the differentiation of Th cells in those aged mice to a more youthful phenotype with fewer Th cells expressing FoxP3. In addition, treatment with senolytic drugs induced differentiation of aged Th toward a healing Type 2 phenotype, which promotes a return to homeostasis. These results suggest that senescent cells, via production of cytokines such as TGF‐beta, have a significant impact on Th differentiation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.