Thousands of youth suffering from acquired brain injury or other early-life neurological disease live, mature, and learn with only limited communication and interaction with their world. Such cognitively capable children are ideal candidates for brain-computer interfaces (BCI). While BCI systems are rapidly evolving, a fundamental gap exists between technological innovators and the patients and families who stand to benefit. Forays into translating BCI systems to children in recent years have revealed that kids can learn to operate simple BCI with proficiency akin to adults. BCI could bring significant boons to the lives of many children with severe physical impairment, supporting their complex physical and social needs. However, children have been neglected in BCI research and a collaborative BCI research community is required to unite and push pediatric BCI development forward. To this end, the pediatric BCI Canada collaborative network (BCI-CAN) was formed, under a unified goal to cooperatively drive forward pediatric BCI innovation and impact. This article reflects on the topics and discussions raised in the foundational BCI-CAN meeting held in Toronto, ON, Canada in November 2019 and suggests the next steps required to see BCI impact the lives of children with severe neurological disease and their families.
Thorough preclinical evaluation of functionalized biomaterials for treatment of large bone defects is essential prior to clinical application. Using in vivo micro-computed tomography (micro-CT) and mouse femoral defect models with different defect sizes, we were able to detect spatio-temporal healing patterns indicative of physiological and impaired healing in three defect sub-volumes and the adjacent cortex. The time-lapsed in vivo micro-CT-based approach was then applied to evaluate the bone regeneration potential of functionalized biomaterials using collagen and bone morphogenetic protein (BMP-2). Both collagen and BMP-2 treatment led to distinct changes in bone turnover in the different healing phases. Despite increased periosteal bone formation, 87.5% of the defects treated with collagen scaffolds resulted in non-unions. Additional BMP-2 application significantly accelerated the healing process and increased the union rate to 100%. This study further shows potential of time-lapsed in vivo micro-CT for capturing spatio-temporal deviations preceding non-union formation and how this can be prevented by application of functionalized biomaterials. This study therefore supports the application of longitudinal in vivo micro-CT for discrimination of normal and disturbed healing patterns and for the spatio-temporal characterization of the bone regeneration capacity of functionalized biomaterials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.