Objective: In light of the current controversy about whether severe temper outbursts are diagnostic of mania in young children, we conducted a study to characterize such children, focusing on mania and other mood disorders, emotion regulation, and parental psychiatric history. Methods: Study participants included 51 5-9-year-old children with frequent, impairing outbursts (probands) and 24 nonreferred controls without outbursts. Parents completed a lifetime clinical interview about their child, and rated their child's current mood and behavior. Teachers completed a behavior rating scale. To assess emotion regulation, children were administered the Balloons Game, which assesses emotion expressivity in response to frustration, under demands of high and low regulation. Parental lifetime diagnoses were ascertained in blind clinical interviews. Results: No child had bipolar disorder, bipolar disorder not otherwise specified (NOS), or major depression (MDD). The most prevalent disorder was oppositional defiant disorder (88.2%), followed by attention-deficit/hyperactivity disorder (74.5%), anxiety disorders (49.0%), and non-MDD depressive disorders (33.3%). Eleven probands (21.6%) met criteria for severe mood dysregulation. During the Balloons Game, when there were no demands for self-regulation, children with severe outbursts showed reduced positive expressivity, and also showed significant deficits in controlling negative facial expressions when asked to do so. Anxiety disorders were the only diagnoses significantly elevated in probands' mothers. Conclusions: Overall, young children with severe temper outbursts do not present with bipolar disorder. Rather, disruptive behavior disorders with anxiety and depressive mood are common. In children with severe outbursts, deficits in regulating emotional facial expressions may reflect deficits controlling negative affect. This work represents a first step towards elucidating mechanisms underlying severe outbursts in young children.
The color-changing dress is a 2015 Internet phenomenon in which the colors in a picture of a dress are reported as blue-black by some observers and white-gold by others. The standard explanation is that observers make different inferences about the lighting (is the dress in shadow or bright yellow light?); based on these inferences, observers make a best guess about the reflectance of the dress. The assumption underlying this explanation is that reflectance is the key to color constancy because reflectance alone remains invariant under changes in lighting conditions. Here, we demonstrate an alternative type of invariance across illumination conditions: An object that appears to vary in color under blue, white, or yellow illumination does not change color in the high spatial frequency region. A first approximation to color constancy can therefore be accomplished by a high-pass filter that retains enough low spatial frequency content so as to not to completely desaturate the object. We demonstrate the implications of this idea on the Rubik's cube illusion; on a shirt placed under white, yellow, and blue illuminants; and on spatially filtered images of the dress. We hypothesize that observer perceptions of the dress's color vary because of individual differences in how the visual system extracts high and low spatial frequency color content from the environment, and we demonstrate cross-group differences in average sensitivity to low spatial frequency patterns.
Brightness illusions demonstrate that an object's perceived brightness depends on its visual context, leading to theoretical explanations ranging from simple lateral inhibition to those based on the influence of knowledge of and experience with the world. We measure the relative brightness of mid-luminance test disks embedded in gray-scale images, and show that rankings of test disk brightness are independent of viewing distance, implying that the rankings depend on the physical object size, not the size of disks subtended on the retina. A single filter that removes low spatial frequency content, adjusted to the diameters of the test disks, can account for the relative brightness of the disks. We note that the removal of low spatial frequency content is a principle common to many different approaches to brightness/lightness phenomena; furthermore, object-size representations--as opposed to retinal-size representations--inherently remove low spatial frequency content, therefore, any process that creates object representations should also produce brightness illusions.
Kitaoka’s Tomato is a color illusion in which a semitransparent blue-green field is placed on top of a red object (a tomato). The tomato appears red even though the pixels would appear green if viewed in isolation. We show that this phenomenon can be explained by a high-pass filter and by histogram equalization. The results suggest that this illusion does not require complex inferences about color constancy; rather, the tomato’s red is available in the physical stimulus at the appropriate spatial scale and dynamic range.
The binding problem is a longstanding issue in vision science: i.e., how are humans able to maintain a relatively stable representation of objects and features even though the visual system processes many aspects of the world separately and in parallel? We previously investigated this issue with a variant of the bounce-pass paradigm, which consists of two rectangular bars moving in opposite directions; if the bars are identical and never overlap, the motion could equally be interpreted as bouncing or passing. Although bars of different colors should be seen as passing each other (since the colors provide more information about the bars' paths), we found “Feature Exchange”: observers reported the paradoxical perception that the bars appear to bounce off of each other and exchange colors. Here we extend our previous findings with three demonstrations. “Peripheral Feature-Exchange” consists of two colored bars that physically bounce (they continually meet in the middle of the monitor and return to the sides). When viewed in the periphery, the bars appear to stream past each other even though this percept relies on the exchange of features and contradicts the information provided by the color of the bars. In “Face-Exchange” two different faces physically pass each other. When fixating centrally, observers typically report the perception of bouncing faces that swap features, indicating that the Feature Exchange effect can occur even with complex objects. In “Face-Go-Round,” one face repeatedly moves from left to right on the top of the monitor, and the other from right to left at the bottom of the monitor. Observers typically perceive the faces moving in a circle—a percept that contradicts information provided by the identity of the faces. We suggest that Feature Exchange and the paradigms used to elicit it can be useful for the investigation of the binding problem as well as other contemporary issues of interest to vision science.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.