BackgroundCopy number variations are genome polymorphism that influence phenotypic variation and are an important source of genetic variation in populations. The aim of this study was to investigate genetic variability in the Mexican Creole chicken population using CNVs.ResultsThe Hidden Markov Model of the PennCNV software detected a total of 1924 CNVs in the genome of the 256 samples processed with Axiom® Genome-Wide Chicken Genotyping Array (Affymetrix). The mapped CNVs comprised 1538 gains and 386 losses, resulting at population level in 1216 CNV regions (CNVRs), of which 959 gains, 226 losses and 31 complex (i.e. containing both losses and gains). The CNVRs covered a total of 47 Mb of the whole genome sequence length, corresponding to 5.12% of the chicken galGal4 autosome assembly.ConclusionsThis study allowed a deep insight into the structural variation in the genome of unselected Mexican chicken population, which up to now has not been genetically characterized. The genomic study disclosed that the population, even if presenting extreme morphological variation, cannot be organized in differentiated genetic subpopulations. Finally this study provides a chicken CNV map based on the 600 K SNP chip array jointly with a genome-wide gene copy number estimates in a native unselected for more than 500 years chicken population.Electronic supplementary materialThe online version of this article (doi:10.1186/s12863-017-0524-4) contains supplementary material, which is available to authorized users.
21Genomic and genetic variation among six Italian chicken native breeds (Livornese, 22 Mericanel della Brianza, Milanino, Bionda Piemontese, Bianca di Saluzzo and 23 Siciliana) were studied using single nucleotide polymorphism (SNP) and copy
Donkeys have played an important role in agricultural land practices and in human historical periods of recent past and, still today, are used as a working power in several world areas. The objective of this study was to identify genetic variability in six Italian donkey breeds using mtDNA D-loop. Fifteen haplotypes, grouped in three haplogroups, were identified. The genetic indices were informative and showed a high population genetic variability. The results of AMOVA analyses based on geographic structuring of Italian populations highlighted that the majority of the observed variance is due to differences among samples within breeds. Comparison among Italian haplotypes and mtDNA D-loop sequences belonging to European domestic and Ethiopian donkeys and wild asses, clearly define two clades referred to Nubian lineage. The results can be useful to complement safeguard planes for donkey breeds that are considered to extinction endangered.
Copy number variants (CNVs) are an important source of genomic structural variation, recognized to influence phenotypic variation in many species. Many studies have focused on identifying CNVs within and between human and livestock populations alike, but only few have explored population-genetic properties in cattle based on CNVs derived from a high-density SNP array. We report a high-resolution CNV scan using Illumina’s 777k BovineHD Beadchip for Valdostana Red Pied (VRP), an autochthonous Italian dual-purpose cattle population reared in the Alps that did not undergo strong selection for production traits. After stringent quality control and filtering, CNVs were called across 108 bulls using the PennCNV software. A total of 6,784 CNVs were identified, summarized to 1,723 CNV regions (CNVRs) on 29 autosomes covering a total of ~59 Mb of the UMD3.1 assembly. Among the mapped CNVRs, there were 812 losses, 832 gains and 79 complexes. We subsequently performed a comparison of CNVs detected in the VRP and those available from published studies in the Italian Brown Swiss (IBS) and Mexican Holstein (HOL). A total of 171 CNVRs were common to all three breeds. Between VRP and IBS, 474 regions overlapped, while only 313 overlapped between VRP and HOL, indicating a more similar genetic background among populations with common origins, i.e. the Alps. The principal component, clustering and admixture analyses showed a clear separation of the three breeds into three distinct clusters. In order to describe the distribution of CNVs within and among breeds we used the pair VST statistic, considering only the CNVRs shared to more than 5 individuals (within breed). We identified unique and highly differentiated CNVs (n = 33), some of which could be due to specific breed selection and adaptation. Genes and QTL within these regions were characterized.
Genetic variation enables both adaptive evolutionary changes and artificial selection. Genetic makeup of populations is the result of a long-term process of selection and adaptation to specific environments and ecosystems. The aim of this study was to characterize the genetic variability of México's chicken population to reveal any underlying population structure. A total of 213 chickens were sampled in different rural production units located in 25 states of México. Genotypes were obtained using the Affymetrix Axiom® 600 K Chicken Genotyping Array. The Identity by Descent (IBD) and the principal components analysis (PCA) were performed by SVS software on pruned single nucleotide polymorphisms (SNPs).ADMIXTURE analyses identified 3 ancestors and the proportion of the genetic contribution of each of them has been determined in each individual. The results of the Neighbor-Joining (NJ) analysis resulted consistent with those obtained by the PCA. All methods utilized in this study did not allow a classification of Mexican chicken in distinct clusters or groups. A total of 3,059 run of homozygosity (ROH) were identified and, being mainly short in length (<4 Mb), these regions are indicative of a low inbreeding level in the population. Finally, findings from the ROH analysis indicated the presence of natural selective pressure in the population of Mexican chicken.The study indicates that the Mexican chicken clearly appear to be a unique creole chicken population that was not subjected to a specific artificial selection. Results provide a genetic knowledge that can be used as a basis for the genetic management of a unique and very large creole population, especially in the view of using it in production of hybrids to increase the productivity and economic revenue of family farming agriculture, which is widely present in México.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.