In conjunction with the second International Environmental Omics Symposium (iEOS) conference, held at the University of Liverpool (United Kingdom) in September 2014, a workshop was held to bring together experts in toxicology and regulatory science from academia, government and industry. The purpose of the workshop was to review the specific roles that high-content omics datasets (eg, transcriptomics, metabolomics, lipidomics, and proteomics) can hold within the adverse outcome pathway (AOP) framework for supporting ecological and human health risk assessments. In light of the growing number of examples of the application of omics data in the context of ecological risk assessment, we considered how omics datasets might continue to support the AOP framework. In particular, the role of omics in identifying potential AOP molecular initiating events and providing supportive evidence of key events at different levels of biological organization and across taxonomic groups was discussed. Areas with potential for short and medium-term breakthroughs were also discussed, such as providing mechanistic evidence to support chemical read-across, providing weight of evidence information for mode of action assignment, understanding biological networks, and developing robust extrapolations of species-sensitivity. Key challenges that need to be addressed were considered, including the need for a cohesive approach towards experimental design, the lack of a mutually agreed framework to quantitatively link genes and pathways to key events, and the need for better interpretation of chemically induced changes at the molecular level. This article was developed to provide an overview of ecological risk assessment process and a perspective on how high content molecular-level datasets can support the future of assessment procedures through the AOP framework.
BackgroundThe eastern mosquitofish (Gambusia holbrooki) has the potential to become a bioindicator organism of endocrine disrupting chemicals (EDCs) due to its androgen-driven secondary sexual characteristics. However, the lack of molecular information on G. holbrooki hinders its use as a bioindicator coupled with biomarker data. While traditional gene-by-gene approaches provide insight for biomarker development, a holistic analysis would provide more rapid and expansive determination of potential biomarkers. The objective of this study was to develop and utilize a mosquitofish microarray to determine potential biomarkers of subchronic androgen exposure. To achieve this objective, two specific aims were developed: 1) Sequence a G. holbrooki cDNA library, and 2) Use microarray analysis to determine genes that are differentially regulated by subchronic androgen exposure in hepatic tissues of 17β-trenbolone (TB) exposed adult female G. holbrooki.ResultsA normalized library of multiple organs of male and female G. holbrooki was prepared and sequenced by the Illumina GA IIx and Roche 454 XLR70. Over 30,000 genes with e-value ≤ 10-4 were annotated and 14,758 of these genes were selected for inclusion on the microarray. Hepatic microarray analysis of adult female G. holbrooki exposed to the vehicle control or 1 μg/L of TB (a potent anabolic androgen) revealed 229 genes upregulated and 279 downregulated by TB (one-way ANOVA, p < 0.05, FDR α = 0.05, fold change > 1.5 and < −1.5). Fifteen gene ontology biological processes were enriched by TB exposure (Fisher’s Exact Test, p < 0.05). The expression levels of 17β-hydroxysteroid dehydrogenase 3 and zona pellucida glycoprotein 2 were validated by quantitative polymerase chain reaction (qPCR) (Student’s t-test, p < 0.05).ConclusionsCoupling microarray data with phenotypic changes driven by androgen exposure in mosquitofish is key for developing this organism into a bioindicator for EDCs. Future studies using this array will enhance knowledge of the biology and toxicological response of this species. This work provides a foundation of molecular knowledge and tools that can be used to delve further into understanding the biology of G. holbrooki and how this organism can be used as a bioindicator organism for endocrine disrupting pollutants in the environment.
BackgroundIn the past few years, the use of social media has gradually become an important part of our daily lives. While some might see this as a threat to our productivity or as a source of procrastination, social media as a whole have unquestionably changed the way in which information and knowledge disseminate in our society.Social media guideThis article is meant to serve as a guide for scientists who would like to establish their online presence and includes an outline of the benefits of using social media as well as strategies for establishing and improving your presence in social media. Environmental scientists in particular can benefit enormously from this approach, since this field of science deals with topics that directly impact our daily lives.Case studyTo highlight these approaches for our fellow scientists in the field of environmental science and toxicology and in order to better engage with our own peers, we describe the outreach methods used by the student advisory councils of the Society of Environmental Toxicology and Chemistry (SETAC) and how we have worked towards an improved social media presence. In this article we present our initiatives to increase social media usage and engagement within SETAC. This includes joint social media accounts organized by the SETAC student advisory councils from various SETAC geographical units. We also led a course on social media usage at the SETAC Nashville meeting in 2013 and are currently developing other outreach platforms, including high school student-oriented science education blogs.ConclusionThe Students of SETAC will continue to increase communication with and among SETAC students on a global level and promote the use of social media to communicate science to a wide variety of audiences.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.