Kochia plants resistant (R) to field rates of dicamba were characterized for their frequency of occurrence and levels of resistance and for the physiological fate of applied 14C-dicamba. Of 167 randomly sampled fields and seven fields identified by producers to contain R kochia, 19 contained plants that produced 1% or more R progeny. The maximum percentage of R progeny produced by parental plants from any field was 13%. An inbred R line derived from a field collection was 4.6-fold more resistant to dicamba than an inbred susceptible (S) line. Rates of 14C-dicamba uptake and translocation were similar in R and susceptible (S) plants up to 168 h after treatment (HAT). Concentrations of the primary metabolite, 5-hydroxy dicamba, were similar in R and S tissues up to 60 HAT, although amounts were significantly greater in R treated leaves by 96 and 168 HAT. However, because there were negligible levels of dicamba metabolites in R shoots and because the rate of metabolism was relatively slow, the observed changes were inadequate to account for observed resistance levels. Thus, dicamba resistance in kochia cannot be attributed to differential herbicide absorption, translocation, or metabolism. These findings, together with our field observations on the unusually slow spread of resistance within and among fields may indicate that dicamba resistance is a quantitative trait.
Pentachlorophenol (PCP) is a widespread, highly toxic contaminant of soil and water that is generally recalcitrant to microbial breakdown and thus may be considered a good candidate for phytoremediation. PCP toxicity and rates of mineralization were compared in crested wheatgrass seedlings that were either sterile or rootinoculated with microbial consortia derived from soil at a PCP-contaminated site. Inoculated seedlings were more tolerant to PCP and mineralized threefold more 14 C-PCP than sterile seedlings. Only 10% of the recovered radioactivity from sterile seedlings represented mineralized PCP, indicating that rhizosphere microorganisms are primarily responsible for PCP mineralization. The levels of PCP degradation exhibited by several microbial consortia and isolates in liquid culture were not correlated with their ability to protect crested wheatgrass seedlings from PCP toxicity. Most probable number estimates showed that the presence of crested wheatgrass root exudates enhanced the number of PCP-degrading microorganisms by 100-fold in liquid culture, indicating that exudate components provide some nutritive benefit, possibly as PCP co-metabolites. A close association of plants and rhizosphere microorganisms appears to be necessary for crested wheatgrass survival in PCPcontaminated soil, although understanding the molecular details of this association requires further research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.