SUMMARY The circadian timing system synchronizes cellular function by coordinating rhythmic transcription via a transcription-translational feedback loop. How the circadian system regulates gene expression at the translational level remains a mystery. Here, we show that the key circadian transcription factor BMAL1 associates with the translational machinery in the cytosol and promotes protein synthesis. The mTOR-effector kinase, ribosomal S6 protein kinase 1 (S6K1), an important regulator of translation, rhythmically phosphorylates BMAL1 at an evolutionarily conserved site. S6K1-mediated phosphorylation is critical for BMAL1 to both associate with the translational machinery and stimulate protein synthesis. Protein synthesis rates demonstrate circadian oscillations dependent on BMAL1. Thus, in addition to its critical role in circadian transcription, BMAL1 is a translation factor that links circadian timing and the mTOR signaling pathway. More broadly, these results expand the role of the circadian clock to the regulation of protein synthesis.
Subcellular localization is emerging as an important mechanism for mTORC1 regulation. We report that the tuberous sclerosis complex (TSC) signaling node, TSC1, TSC2 and Rheb, localizes to peroxisomes, where it regulates mTORC1 in response to reactive oxygen species (ROS). TSC1 and TSC2 were bound by PEX19 and PEX5, respectively, and peroxisome-localized TSC functioned as a Rheb GAP to suppress mTORC1 and induce autophagy. Naturally occurring pathogenic mutations in TSC2 decreased PEX5 binding, abrogated peroxisome localization, Rheb GAP activity, and suppression of mTORC1 by ROS. Cells lacking peroxisomes were deficient in mTORC1 repression by ROS and peroxisome-localization deficient TSC2 mutants caused polarity defects and formation of multiple axons in neurons. These data identify a role for TSC in Users may view, print, copy, download and text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms COMPETING FINANCIAL INTERESTSThe authors declare that they have no competing financial interests. HHS Public Access Author Manuscript Author ManuscriptAuthor ManuscriptAuthor Manuscript responding to ROS at the peroxisome, and identify the peroxisome as a signaling organelle involved in regulation of mTORC1.Tuberous sclerosis complex (TSC) is a hereditary hamartoma syndrome caused by defects in either the TSC1 or TSC2 genes 1, 2 . The TSC tumor suppressor is a heterodimer comprised of tuberin (TSC2), a GTPase activating protein (GAP), and its activation partner hamartin (TSC1), which localizes the TSC tumor suppressor to endomembranes and protects TSC2 from proteasomal degradation 3,4 . TSC inhibits the activity of the small GTPase Rheb to repress mammalian target of rapamycin complex 1 (mTORC1) signaling, a negative regulator of autophagy [5][6][7][8][9][10][11][12] . mTORC1 is regulated by a variety of cellular stimuli including amino acids, mitogens such as insulin, glucose, and energy stress [13][14][15] . In the case of amino acids, which do not signal through TSC-Rheb pathway 15 , mTORC1 activity is regulated by the Rag GTPases, which form the Ragulator complex that localizes mTORC1 to the late endosome or lysosome compartment of cells [13][14][15][16][17][18] . We recently reported that TSC functions in a signaling node downstream of ataxia telangiectasia mutated (ATM) to repress mTORC1 in response to reactive oxygen species (ROS) 19 . However, identification of the specific subcellular compartment(s) in which the TSC tumor suppressor functions to regulate mTORC1 in response to ROS has heretofore remained elusive.Peroxisomes, carry out key metabolic functions in the cell including β-oxidation of fatty acids, and are a major source of cellular ROS 20,21 . Like mitochondria, peroxisomes are autonomously replicating organelles. Peroxisome biogenesis requires peroxin (PEX) proteins, which are essential for assembly of functional peroxisomes 22 . Specific PEX pro...
Tuberous sclerosis complex (TSC) is a disorder arising from mutation in the TSC1 or TSC2 gene, characterized by the development of hamartomas in various organs and neurological manifestations including epilepsy, intellectual disability and autism. TSC1/2 protein complex negatively regulates the mammalian target of rapamycin complex 1 (mTORC1) a master regulator of protein synthesis, cell growth and autophagy. Autophagy is a cellular quality-control process that sequesters cytosolic material in double membrane vesicles called autophagosomes and degrades it in autolysosomes. Previous studies in dividing cells have shown that mTORC1 blocks autophagy through inhibition of Unc-51-like-kinase1/2 (ULK1/2). Despite the fact that autophagy plays critical roles in neuronal homeostasis, little is known on the regulation of autophagy in neurons. Here we show that unlike in non-neuronal cells, Tsc2-deficient neurons have increased autolysosome accumulation and autophagic flux despite mTORC1-dependent inhibition of ULK1. Our data demonstrate that loss of Tsc2 results in autophagic activity via AMPK-dependent activation of ULK1. Thus, in Tsc2-knockdown neurons AMPK activation is the dominant regulator of autophagy. Notably, increased AMPK activity and autophagy activation are also found in the brains of Tsc1-conditional mouse models and in cortical tubers resected from TSC patients. Together, our findings indicate that neuronal Tsc1/2 complex activity is required for the coordinated regulation of autophagy by AMPK. By uncovering the autophagy dysfunction associated with Tsc2 loss in neurons, our work sheds light on a previously uncharacterized cellular mechanism that contributes to altered neuronal homeostasis in TSC disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.