Emotionally arousing pictures induce increased activation of visual pathways relative to emotionally neutral images. A predominant model for the preferential processing and attention to emotional stimuli posits that the amygdala modulates sensory pathways through its projections to visual cortices. However, recent behavioral studies have found intact perceptual facilitation of emotional stimuli in individuals with amygdala damage. To determine the importance of the amygdala to modulations in visual processing, we used functional magnetic resonance imaging to examine visual cortical blood oxygenation level-dependent (BOLD) signal in response to emotionally salient and neutral images in a sample of human patients with unilateral medial temporal lobe resection that included the amygdala. Adults with right (n ϭ 13) or left (n ϭ 5) medial temporal lobe resections were compared with demographically matched healthy control participants (n ϭ 16). In the control participants, both aversive and erotic images produced robust BOLD signal increases in bilateral primary and secondary visual cortices relative to neutral images. Similarly, all patients with amygdala resections showed enhanced visual cortical activations to erotic images both ipsilateral and contralateral to the lesion site. All but one of the amygdala resection patients showed similar enhancements to aversive stimuli and there were no significant group differences in visual cortex BOLD responses in patients compared with controls for either aversive or erotic images. Our results indicate that neither the right nor left amygdala is necessary for the heightened visual cortex BOLD responses observed during emotional stimulus presentation. These data challenge an amygdalo-centric model of emotional modulation and suggest that non-amygdalar processes contribute to the emotional modulation of sensory pathways.
A B S T R A C TIL-17 has been implicated in the pathogenesis of multiple sclerosis (MS). Here, we show that blockade of IL-17A, but not IL-17F, attenuated experimental autoimmune encephalomyelitis (EAE). We further show that IL-17A levels were elevated in the CSF of relapsing-remitting MS (RRMS) patients and that they correlated with the CSF/ serum albumin quotient (Qalb), a measure of blood-brain barrier (BBB) dysfunction. We then demonstrated that the combination of IL-17A and IL-6 reduced the expression of tight junction (TJ)-associated genes and disrupted monolayer integrity in the BBB cell line hCMEC/D3. However, unlike IL-17A, IL-6 in the CSF from RRMS patients did not correlate with Qalb. These data highlight the potential importance of targeting IL-17A in preserving BBB integrity in RRMS.
Multiple sclerosis is an autoimmune disease of the CNS in which both genetic and environmental factors are involved. Genome-wide association studies revealed more than 200 risk loci, most of which harbour genes primarily expressed in immune cells. However, whether genetic differences are translated into cell-specific gene expression profiles and to what extent these are altered in patients with multiple sclerosis are still open questions in the field. To assess cell type-specific gene expression in a large cohort of patients with multiple sclerosis, we sequenced the whole transcriptome of fluorescence-activated cell sorted T cells (CD4+ and CD8+) and CD14+ monocytes from treatment-naive patients with multiple sclerosis (n = 106) and healthy subjects (n = 22). We identified 479 differentially expressed genes in CD4+ T cells, 435 in monocytes, and 54 in CD8+ T cells. Importantly, in CD4+ T cells, we discovered upregulated transcripts from the NAE1 gene, a critical subunit of the NEDD8 activating enzyme, which activates the neddylation pathway, a post-translational modification analogous to ubiquitination. Finally, we demonstrated that inhibition of NEDD8 activating enzyme using the specific inhibitor pevonedistat (MLN4924) significantly ameliorated disease severity in murine experimental autoimmune encephalomyelitis. Our findings provide novel insights into multiple sclerosis-associated gene regulation unravelling neddylation as a crucial pathway in multiple sclerosis pathogenesis with implications for the development of tailored disease-modifying agents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.