Ezrin-radixin-moesin (ERM) proteins regulate the organization and function of specific cortical structures in polarized epithelial cells by connecting filamentous (F)-actin to plasma membrane proteins. The contribution of ERM proteins to these structures depends on a conformational change to an active state in which the C-terminal region interacts with F-actin and the N-terminal domain interacts with membrane ligands. The specific ligands necessary for stabilizing ERM proteins at the membrane are not known. By generating mice deficient for ERM-binding phosphoprotein 50͞ Na ؉ /H ؉ exchanger regulatory factor 1 (EBP50͞NHERF1), which binds the N-terminal domain of ERM proteins, we found that EBP50 is required for the maintenance of active ERM proteins at the cortical brush border membranes (BBM) of polarized epithelia. In EBP50(؊͞؊) mice, ERM proteins were significantly decreased specifically in BBM from kidney and small intestine epithelial cells, whereas they remained unchanged in the cytoplasm. In wild-type animals, EBP50 was localized to the BBM compartment where it was processed by cleavage of the ERM-binding motif. In BBM, active ERM proteins formed distinct complexes with full-length EBP50 and with F-actin, suggesting a switch mechanism in which proteolytically processed EBP50 would release ERM proteins to complex with F-actin. The structural defects found in the EBP50(؊͞؊) intestinal microvilli were reminiscent of those described in ezrin(؊͞؊) mice, suggesting a role for EBP50 in organizing apical epithelial membranes. mutant (knockout) mice ͉ brush border membranes ͉ intestine ͉ kidney
PTEN, a tumor suppressor frequently inactivated in many human cancers, directly antagonizes the activity of phosphatidylinositol-3-OH kinase (PI3K) by dephosphorylating phosphoinositides. We show here that PTEN interacts directly with the NHERF1 and NHERF2 (Na þ /H þ exchanger regulatory factor) homologous adaptor proteins through the PDZ motif of PTEN and the PDZ1 domain of NHERF1 or both PDZ domains of NHERF2. NHERFs were shown to interact directly with platelet-derived growth factor receptor (PDGFR), and we demonstrate the assembly of a ternary complex between PTEN, NHERFs and PDGFR. The activation of the PI3K pathway after PDGFR stimulation was prolonged in NHERF1(À/À) mouse embryonic fibroblasts as compared to wild-type cells, consistent with defective PTEN recruitment to PDGFR in the absence of NHERF1. Depletion of NHERF2 by small interfering RNA similarly increased PI3K signaling. Phenotypically, the loss of NHERF1 enhanced the PDGFinduced cytoskeletal rearrangements and chemotactic migration of the cells. These data indicate that, in normal cells, NHERF proteins recruit PTEN to PDGFR to restrict the activation of the PI3K.
Anchorage-independent growth is a hallmark of tumor growth and results from enhanced proliferation and altered cell-cell and cell-matrix interactions. By using genedeficient mouse embryonic fibroblasts (MEFs), we showed for the first time that NHERF1/EBP50 (Na/H exchanger regulator factor 1/ezrin-radixin-moesin binding phosphoprotein 50), an adapter protein with membrane localization under physiological conditions, inhibits cell motility and is required to suppress anchorage-independent growth. Both NHERF1 PDZ domains are necessary for the tumor suppressor effect. NHERF1 associates directly through the PDZ2 domain with b-catenin and is required for b-catenin localization at the cell-cell junctions in MEFs. Mechanistically, the absence of NHERF1 selectively decreased the interaction of b-catenin with E-cadherin, but not with N-cadherin. The ensuing disorganization of E-cadherinmediated adherens junctions as well as the observed moderate increase in b-catenin transcriptional activity contributed most likely to the anchorage-independent growth of NHERF1-deficient MEFs. In vivo, NHERF1 is specifically localized at the apical brush-border membrane in intestinal epithelial cells and is required to maintain a fraction of the cortical b-catenin at this level. Thus, NHERF1 emerges as a cofactor essential for the integrity of epithelial tissues by maintaining the proper localization and complex assembly of b-catenin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.