Key points The heart is innervated by a dense sympathetic neuron network which, in the short term, controls chronotropy and inotropy and, in the long term, regulates cardiomyocyte size. Acute neurogenic control of heart rate is achieved locally through direct neuro‐cardiac coupling at specific junctional sites (neuro‐cardiac junctions). The ventricular sympathetic network topology is well‐defined and characteristic for each mammalian species. In the present study, we used cell size regulation to determine whether long‐term modulation of cardiac structure is achieved via direct sympatho‐cardiac coupling. Local density of cardiac innervation correlated with cell size throughout the myocardial walls in all mammalian species analysed, including humans. The data obtained suggest that constitutive neurogenic control of cardiomyocyte trophism occurs through direct intercellular signalling at neuro‐cardiac junctions. Abstract It is widely appreciated that sympathetic stimulation of the heart involves a sharp increase in beating rate and significant enhancement of contractility. We have previously shown that, in addition to these evident functions, sympathetic neurons (SNs) also provide trophic input to cardiomyocytes (CMs), regulating cell and organ size. More recently, we have demonstrated that cardiac neurons establish direct interactions with CMs, allowing neuro‐cardiac communication to occur locally, with a ‘quasi‐synaptic’ mechanism. Based on the evidence that cardiac SNs are unevenly distributed throughout the myocardial walls, we investigated the hypothesis that CM size distribution reflects the topology of neuronal density. In vitro analyses of SN/CM co‐cultures, ex vivo confocal and multiphoton imaging in clarified hearts, and biochemical and molecular approaches were employed, in both rodent and human heart biopsies. In line with the trophic effect of SNs, and with local neuro‐cardiac communication, CMs, directly contacted by SNs in co‐cultures, were larger than the non‐targeted ones. This property reflects the distribution of CM size throughout the ventricles of intact mouse heart, in which cells in the outer myocardial layers, which were contacted by more neuronal processes, were larger than those in the less innervated subendocardial region. Such differences disappeared upon genetic or pharmacological interference with the trophic SN/CM signalling axis. Remarkably, CM size followed the SN distribution pattern in other mammals, including humans. Our data suggest that both the acute and chronic influence of SNs on cardiac function and structure is enacted as a result of the establishment of specific intercellular neuro‐cardiac junctions.
Abnormalities of cardiomyocyte Ca2 + homeostasis and excitation–contraction (E–C) coupling are early events in the pathogenesis of hypertrophic cardiomyopathy (HCM) and concomitant determinants of the diastolic dysfunction and arrhythmias typical of the disease. T-tubule remodelling has been reported to occur in HCM but little is known about its role in the E–C coupling alterations of HCM. Here, the role of T-tubule remodelling in the electro-mechanical dysfunction associated to HCM is investigated in the Δ160E cTnT mouse model that expresses a clinically-relevant HCM mutation. Contractile function of intact ventricular trabeculae is assessed in Δ160E mice and wild-type siblings. As compared with wild-type, Δ160E trabeculae show prolonged kinetics of force development and relaxation, blunted force-frequency response with reduced active tension at high stimulation frequency, and increased occurrence of spontaneous contractions. Consistently, prolonged Ca2 + transient in terms of rise and duration are also observed in Δ160E trabeculae and isolated cardiomyocytes. Confocal imaging in cells isolated from Δ160E mice reveals significant, though modest, remodelling of T-tubular architecture. A two-photon random access microscope is employed to dissect the spatio-temporal relationship between T-tubular electrical activity and local Ca2 + release in isolated cardiomyocytes. In Δ160E cardiomyocytes, a significant number of T-tubules (> 20%) fails to propagate action potentials, with consequent delay of local Ca2 + release. At variance with wild-type, we also observe significantly increased variability of local Ca2 + transient rise as well as higher Ca2 +-spark frequency. Although T-tubule structural remodelling in Δ160E myocytes is modest, T-tubule functional defects determine non-homogeneous Ca2 + release and delayed myofilament activation that significantly contribute to mechanical dysfunction.
Although neuronal density analysis on human brain slices is available from stereological studies, data on the spatial distribution of neurons in 3D are still missing. Since the neuronal organization is very inhomogeneous in the cerebral cortex, it is critical to map all neurons in a given volume rather than relying on sparse sampling methods. To achieve this goal, we implement a new tissue transformation protocol to clear and label human brain tissues and we exploit the high-resolution optical sectioning of two-photon fluorescence microscopy to perform 3D mesoscopic reconstruction. We perform neuronal mapping of 100mm3 human brain samples and evaluate the volume and density distribution of neurons from various areas of the cortex originating from different subjects (young, adult, and elderly, both healthy and pathological). The quantitative evaluation of the density in combination with the mean volume of the thousands of neurons identified within the specimens, allow us to determine the layer-specific organization of the cerebral architecture.
RATIONALE The pathogenesis of MYBPC3-associated hypertrophic cardiomyopathy is still unresolved. We exploited a large and well-characterized patient population carrying the MYBPC3-c.772G>A variant (p. Glu258Lys, E258K) to provide translational insight based on studies on surgical myectomy samples, human-induced pluripotent stem cell (hiPSC)-cardiomyocytes and engineered heart tissues. OBJECTIVE To gain insights into the pathogenic mechanisms driven by the MYBPC3-c.772G>A mutation using a comprehensive investigation of human disease models. METHODS AND RESULTS Haplotype analysis revealed MYBPC3-c.772G>A as a founder mutation in Tuscany. The mutation leads to reduced cMyBP-C (cardiac myosin binding protein-C) expression, supporting haploinsufficiency as the main primary disease mechanism. Functional perturbations were studied in left ventricular samples from 4 patients who underwent myectomy, as well as in human hiPSC-cardiomyocytes and engineered heart tissues harboring c.772G>A, compared with samples from nonfailing nonhypertrophic surgical patients and hiPSC lines from healthy controls. Mechanical studies in single myofibrils and permeabilized muscle strips highlighted faster cross-bridge cycling, and higher energy cost of tension generation. A novel approach based on tissue clearing and advanced optical microscopy supported the idea that the sarcomere energetics dysfunction is intrinsically related with the reduction in cMyBP-C. Studies in single cardiomyocytes (native and hiPSC-derived), intact trabeculae and hiPSC-engineered heart tissues revealed prolonged action potentials, slowerCa 2+ transients and preserved twitch duration, suggesting that the slower excitation-contraction coupling counterbalanced the faster sarcomere kinetics. This conclusion was strengthened by in silico simulations. Of note, the results from patient tissues and hiPSC-derived models obtained from the same patients were essentially the same, supporting the use of hiPSC-models for hypertrophic cardiomyopathy studies. CONCLUSIONS Hypertrophic cardiomyopathy–related MYBPC3 -c.772G>A mutation invariably impairs sarcomere energetics and cross-bridge cycling. Compensatory electrophysiological changes (eg, reduced potassium channel expression) appear to preserve twitch contraction parameters, but may expose patients to greater arrhythmic propensity and disease progression. Therapeutic approaches correcting the primary sarcomeric defects may prevent secondary cardiomyocyte remodeling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.