Rhizophora mangle L. is a widespread mangrove species in the Western Hemisphere. Mangrove habitat loss and their importance to coastal and reef ecosystems make greater understanding of their genetic structure useful for conservation and management. An amplified fragment polymorphism (AFLP) analysis was performed on samples from Florida and the Caribbean to discover the genetic structure present. R. mangle had variable genetic diversity not related to latitude; P ranged 7 %-92 %. Some other factor, perhaps human impact, has caused low genetic diversity in some populations. Across Florida R. mangle populations varied in genetic diversity with less diversity (G st =0.195) and greater gene flow on the Atlantic coast (Nm =2.07) than on the Gulf coast (G st =0.717, Nm=0.197). Gene flow between Caribbean islands was low (Nm = 0.386) compared to continental populations (Nm=1.40), indicating that long distance dispersal is not common between islands. Analysis of molecular variance (AMOVA) analysis showed significant deviations from Hardy-Weinberg expectations at the level of region among subpopulations and overall genetic difference among subpopulations for R. mangle. One implication for management is that small continental populations and island populations may be genetically isolated and distinct from each other.
Previous research have distinguished the risks of supply chain disruptions and the negative effect of supply chain disruption on operational performance in terms of sales, costs and inventory. However, few researchers have studied supply chain risk management and strategies in relation to port conflicts. The 2016 port conflict at a major logistics port in Scandinavia, the Port of Gothenburg, posed an opportunity to study risk management and strategies in the context of major port disruptions, in this case, a labour conflict. The fashion retail industry was affected especially hard due to the short product life cycles and this paper, by means of case study method and analysis, investigates five cases in order to understand how they were affected and what mitigation strategies was used. Results illustrates that during the port conflict, the percentage of increase in logistics cost ranged between 15% and 70%, greatly affected by what mitigation strategy was used by the case company.
A field study investigated penetration of outdoor ground ultra-low–volume (ULV) aerosol and thermal fog adulticide applications into a dwelling to control the dengue vector Aedes aegypti (L). Four applications of Kontrol 4-4 (4.6% permethrin active ingredient [AI], 4.6% piperonyl butoxide) at the maximum label rate were made at 25–30 m in front of a house at Camp Blanding Joint Training Center, Starke, FL, during summer 2016. The ULV sprayer and thermal fogger nozzles were oriented horizontally, and vehicle travel speeds were 16 and 24 km/h, respectively. All doors and windows of the house were left open. Spray efficacy was assessed using caged female mosquitoes positioned 30 cm above ground, outside and inside of the house. Interior cages were placed in open areas and cryptic sites (i.e., in a closet or cardboard box). A spinner holding 2 rods sized 3 mm × 75 mm was deployed next to each cage (except cryptic sites) to sample droplets and to quantify AI deposition. Thirty minutes after application, cages were removed, slides collected, and mosquitoes transferred to clean cages in the laboratory where mortality was assessed at 24 h posttreatment. The ULV application to the south side of the house produced 100% mortality in outdoor and indoor cages and 24% mortality at cryptic sites. Similarly applied thermal fog resulted in 85% mortality outdoors, 34% indoors, and only 4% in cages at cryptic sites. Application of either method from the west resulted in 19–61% mortality outdoors and 0.5–6.5% indoors. Droplet volume median diameter (Dv0.5) on rods from the ULV application was significantly larger compared with the thermal fogger outdoors, but similar indoors. Outdoors and indoors, the AI deposition from ULV was significantly higher than from thermal fog. Our results show the potential for controlling dengue vectors inside houses with outdoor ground ULV applications in areas where doors and windows are left open for ventilation.
Wireworms are a common soil-dwelling pest of maize, Zea mays L., in the midwestern United States. Wireworms are a problematic group to control and study due to the difficulty involved in identification. The objectives of this study are to identify this species complex of wireworms by using molecular diagnostic techniques and to reconstruct a phylogeny of economically important wireworm species. The cytochrome oxidase I gene of mitochondrial DNA was sequenced from > 300 individuals. The species analyzed include all economically important members of the genus Melanotus Eschscholtz as well as Conoderus lividus (De Geer). The species that are indistinguishable in the larval stage were successfully separated using nucleotide p-distances, and sequence data were then used in phylogenetic analyses. The data presented here represent an initial phylogenetic hypothesis concerning economically important wireworms. Our results indicate that the molecular phylogeny of the mitochondrial cytochrome oxidase subunit I gene provides a fast and accurate method of separating wireworm species. By increasing the ease and accuracy of identification, we hope to facilitate further investigations into their biology and control.
The predatory spined soldier bug, Podisus maculiventris (Say) (Heteroptera: Pentatomidae), is an economically important and highly valued biological control agent. There is substantial information on the biology, ecology, behavior, and rearing of this stink bug. However, virtually nothing is known of its genetic variation, in natural or domesticated populations. To address this lacuna, we used amplified fragment length polymorphism (AFLP) to assess the genetic variability of field and laboratory populations. Four AFLP universal primer combinations yielded a total of 209 usable loci. The AFLP results showed greater genetic variability between populations from Missouri and Mississippi (both USA), and relatively low variability within Missouri populations. We infer little genetic isolation among Missouri field populations and within laboratory populations but a significant genetic isolation between Missouri and Mississippi populations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.