Background and Objectives: The purpose of this systematic review is to synthesize the influence cooling modality has on survival with and without medical complications from exertional heat stroke (EHS) in sport and military populations. Methods and Materials: All peer-reviewed case reports or series involving EHS patients were searched in the following online databases: PubMed, Scopus, SPORTDiscus, Medline, CINAHL, Academic Search Premier, and the Cochrane Library: Central Registry of Clinical Trials. Cooling methods were subdivided into “adequate” (>0.15 °C/min) versus “insufficient” (<0.15 °C/min) based on previously published literature on EHS cooling rates. Results: 613 articles were assessed for quality and inclusion in the review. Thirty-two case reports representing 521 EHS patients met the inclusion criteria. Four hundred ninety-eight (498) patients survived EHS (95.58%) and 23 (4.41%) patients succumbed to complications. Fischer’s Exact test on 2 × 2 contingency tables and relative risk ratios were calculated to determine if modality cooling rate was associated with patient outcomes. EHS patients that survived who were cooled with an insufficient cooling rate had a 4.57 times risk of medical complications compared to patients who were treated by adequate cooling methods, regardless of setting (RR = 4.57 (95%CI: 3.42, 6.28)). Conclusions: This is the largest EHS dataset yet compiled that analyzes the influence of cooling rate on patient outcomes. Zero patients died (0/521, 0.00%) when treatment included a modality with an adequate cooling rate. Conversely, 23 patients died (23/521, 4.41%) with insufficient cooling. One hundred seventeen patients (117/521, 22.46%) survived with medical complications when treatment involved an insufficient cooling rate, whereas, only four patients had complications (4/521, 0.77%) despite adequate cooling. Cooling rates >0.15 °C/min for EHS patients were significantly associated with surviving EHS without medical complications. In order to provide the best standard of care for EHS patients, an aggressive cooling rate >0.15 °C/min can maximize survival without medical complications after exercise-induced hyperthermia.
Objectives: To assess the effects of hydration status and ice-water dousing on physiological and performance parameters. Design: Randomized, crossover. Methods: Twelve athletes (mean[M] ± standard deviation [SD]; age, 20 ± 1 years; height, 174 ± 8 cm; body mass, 72.1 ± 11.0 kg; VO 2max 53.9 ± 7.3 mL⋅kg −1 ⋅min −1 ) completed four trials (euhydrated without dousing, hypohydrated without dousing, euhydrated with dousing, and hypohydrated with dousing), which involved intermittent treadmill running (five 15-minute bouts) in the heat (M ± SD; ambient temperature, 34.7 ± 2.1°C; relative humidity, 46 ± 3%; wet-bulb globe temperature, 28.0 ± 0.4°C). Participants also completed four cognitive, power, agility, reaction time, and repeated sprint performance tests throughout each trial. Heart rate (HR) and rectal temperature (T rec ) were measured continuously. Repeated measures ANOVAs were performed to assess differences between physiological and performance variables. Alpha was set at ≤0.05, a priori. Data are reported as mean difference ± standard error (MD ± SE). Results: HR was significantly lower in euhydrated trials compared to hypohydrated trials, irrespective of dousing (8 ± 2 bpm; p = 0.001). Dousing did not significantly impact HR (p = 0.455) and there was no interaction between hydration and dousing (p = 0.893). T rec was significantly lower in euhydrated trials compared to hypohydrated trials (0.39 ± 0.05°C, p < 0.001), with no effect from dousing alone (p = 0.113) or the interaction of hydration and dousing (p = 0.848). Dousing resulted in improved sprint performance (11 ± 3 belt rotations, p = 0.007), while hydration status did not (p = 0.235). Conclusions: Athletes should aim to maintain euhydration during exercise in the heat for improved physiological function and cooling with ice-water dousing elicits additional performance benefits.
Background: A Venn diagram consisting of percentage body mass loss, urine color, and thirst perception (weight, urine, thirst [WUT]) has been suggested as a practical method to assess hydration status. However, no study to date has examined relationships between WUT and urine hydration indices. Thus, the purpose of this study was to investigate relationships between urine specific gravity, urine osmolality, and the WUT criteria. Hypothesis: Urine specific gravity and urine osmolality indicate hypohydration when the WUT criteria demonstrate hypohydration (≥2 markers). Study Design: Laboratory cohort study. Level of Evidence: Level 3. Methods: A total of 22 women (mean ± SD; age, 20 ± 1 years; mass, 65.4 ± 12.6 kg) and 21 men (age, 21 ± 1 years; body mass, 78.7 ± 14.6 kg) participated in this study. First morning body mass, urine color, urine specific gravity, urine osmolality, and thirst level were collected for 10 consecutive days in a free-living situation. Body mass loss >1%, urine color >5, and thirst level ≥5 were used as the dehydration thresholds. The number of markers that indicated dehydration levels were counted and categorized into either 3, 2, 1, or 0 WUT markers that indicated dehydration. One-way analysis of variance with Tukey pairwise comparisons was used to assess the differences in urine specific gravity and urine osmolality between the different number of WUT markers. Results: Urine specific gravity in 3 WUT markers (mean ± SD [effect size], 1.021 ± 0.007 [0.57]; P = 0.025) and 2 WUT markers (1.019 ± 0.010 [0.31]; P = 0.026) was significantly higher than 1 WUT marker (1.016 ± 0.009). Urine mosmolality in 2 WUT markers (705 ± 253 mOsmol [0.43]; P = 0.018) was significantly higher than 1 WUT (597 ± 253 mOsmol). Meeting at least 2 WUT markers resulted in sensitivities of 0.652 (2 WUT criteria met) and 0.933 (3 WUT criteria met) to detect urine osmolality >700 mOsmol. Conclusion: These results suggest that when 3 WUT markers are met, urine specific gravity and urine osmolality were greater than euhydration cutoff points. The WUT criterion is a useful tool to use in field settings to assess hydration status when first morning urine sample was used. Clinical Relevance: Athletes, coaches, sports scientists, and medical professionals can use WUT criteria to monitor dehydration with reduced cost and time.
Clinical Scenario: Exercise in the heat can lead to performance decrements and increase the risk of heat illness. Heat acclimation refers to the systematic and gradual increase in exercise in a controlled, laboratory environment. Increased duration and intensity of exercise in the heat positively affects physiological responses, such as higher sweat rate, plasma volume expansion, decreased heart rate, and lower internal body temperature. Many heat acclimation studies have examined the hydration status of the subjects exercising in the heat. Some of the physiological responses that are desired to elicit heat acclimation (ie, higher heart rate and internal body temperature) are exacerbated in a dehydrated state. Thus, euhydration (optimal hydration) and dehydration trials during heat acclimation induction have been conducted to determine if there are additional benefits to dehydrated exercise trials on physiological adaptations. However, there is still much debate over hydration status and its effect on heat acclimation. Clinical Question: Does dehydration affect the adaptations of plasma volume, heart rate, internal body temperature, skin temperature, and sweat rate during the induction phase of heat acclimation? Summary of Findings: There were no observed differences in plasma volume, internal body temperature, and skin temperature following heat acclimation in this critically appraised topic. One study found an increase in sweat rate and another study indicated greater changes in heart rate following heat acclimation with dehydration. Aside from these findings, all 4 trials did not observe statistically significant differences in euhydrated and dehydrated heat acclimation trials. Clinical Bottom Line: There is minimal evidence to suggest that hydration status affects heat acclimation induction. In the studies that met the inclusion criteria, there were no differences in plasma volume concentrations, internal body temperature, and skin temperature. Strength of Recommendation: Based on the Oxford Centre for Evidence-Based Medicine Scale, Level 2 evidence exists.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.