Most human cancers arise from epithelial tissues, which are apical-basally polarized and possess intercellular adhesive junctions. Epithelial cells grow to characteristic densities, often from proliferative progenitors, which arrest as they mature. Homeostatic mechanisms can maintain this characteristic density if it is exceeded (crowding) or is too low (e.g., in response to wounding). During tumor initiation and progression this homeostatic mechanism is lost. Some aspects of cell polarity are also lost, although many carcinomas retain intercellular junctions and even apical domains. In other cases, and particularly in recurrent tumors, however, the cells become predominantly mesenchymal. A major question, still only incompletely answered, is whether the proteins that determine cell polarity function as tumor suppressors or tumor promoters. Here we discuss recent advances in understanding the role of polarity proteins and homeostasis in cancer.
The myoepithelial cell compartment of the murine postnatal mammary gland is generated from basal cap cells in the terminal end bud and maintained by self-renewal. Transdifferentiation to the luminal lineage does not normally occur but can be induced by DNA damage, luminal cell death or transplantation into a recipient mammary fat pad. Myoepithelial cells cultivated in vitro can also transdifferentiate towards the luminal lineage. Little is known about the molecular mechanisms and gene regulatory networks underlying this plasticity. Using a transgenic mouse (Tg11.5kb-GFP) that marks cap cells with GFP, we discovered that mature myoepithelial cells placed in culture begin to express GFP within ~24 hrs and later express the Keratin 8 (K8) luminal marker. Cell tracking showed that most K8+ cells arose from GFP+ cells, suggesting that myoepithelial cells de-differentiate towards a progenitor state before changing lineage. Differential gene expression analysis, comparing pure GFP+ cap cells with mature myoepithelial cells, identified multiple transcription factors that iRegulon predicted might regulate the myoepithelial to cap cell transition. Knockout of one of these genes, Regulatory Factor 3 (Rfx3), significantly reduced the population of GFP+ cells and increased differentiation to the K8+ luminal lineage. Rfx3 knockout also reduced mammosphere growth and mammary gland regeneration efficiency in a transplantation assay, but had no effect on proliferation in vitro. Together, these data support a key role for Rfx3 in the stabilization of the mammary basal cell lineages.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.