Laser beam cutting is a non-contact, production-flexible and highly productive technique that allows accurate profiling of a wide range of sheet materials. To these and further benefits, laser machining is increasingly being adopted by industry. This paper investigates the effect of material type, workpiece thickness, cutting speed and assistant gas pressure on cut quality for industrial-relevant applications using a CO2 laser. AlMg3 aluminum alloy, St37-2 low-carbon steel and AISI 304 stainless steel were selected to represent the most established materials in many industrial fields and gain insight into different processes (i.e., inert-assisted fusion cutting and oxygen cutting) and absorption behaviors with respect to CO2 laser wavelength. The aim was to enhance the understanding of the mechanisms through which laser cutting parameters and workpiece parameters interact in order to identify general criteria and well-optimized process parameters which guarantee the kerf quality. The quality of laser cut was analyzed in its basic terms: kerf geometry, surface roughness and cut edge quality. The experiments were performed by using a systematic experimental design approach based on Design of Experiments, and the results were validated via Analysis of Variance. Quality assessment was presented and discussed. The visual inspection of cut sections confirms good overall quality and limited presence of laser cut imperfections. The experimental investigation demonstrates that the different materials can be successfully processed within a wide range of the tested values. In addition, optimum cutting conditions which satisfy the straight requirement of the quality standard adopted are identified for each material. This study involves an analysis of both phenomenological and practical issues.
Metal additive manufacturing is a major concern for advanced manufacturing industries thanks to its ability to manufacture complex-shaped parts in materials that are difficult to machine using conventional methods. Nowadays, it is increasingly being used in the industrial manufacturing of titanium-alloy components for aerospace and medical industries; however, the main weakness of structural parts is the fatigue life, which is affected by surface quality, meaning the micro-cracking of small surface defects induced by the manufacturing process. Laser finishing and Abrasive Fluidized Bed are proposed by the authors since they represent cost-effective and environment-friendly alternatives for automated surface finishing. A comparison between these two finishing technologies was established and discussed. Experimental tests investigated both mechanical properties and fatigue performances. The tests also focused on understanding the basic mechanisms involved in fatigue failures of machined Ti-6Al-4V components fabricated via Electron Beam Melting and the effects of operational parameters. X-ray tomography was used to evaluate the internal porosity to better explain the fatigue behaviour. The results demonstrated the capability of Laser finishing and Abrasive Fluidized Beds to improve failure performances. Life Cycle Analysis was additionally performed to verify the effectiveness of the proposed technologies in terms of environmental impact and resource consumption.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.