In order to investigate the distributions and speciation of (129)I (and (127)I) in a contaminated F-Area groundwater plume of the Savannah River Site that cannot be explained by simple transport models, soil resuspension experiments simulating surface runoff or stormflow and erosion events were conducted. Results showed that 72-77% of the newly introduced I(-) or IO(3)(-) were irreversibly sequestered into the organic-rich riparian soil, while the rest was transformed by the soil into colloidal and truly dissolved organo-iodine, resulting in (129)I remobilization from the soil greatly exceeding the 1 pCi/L drinking water permit. This contradicts the conventional view that only considers I(-) or IO(3)(-) as the mobile forms. Laboratory iodination experiments indicate that iodine likely covalently binds to aromatic structures of the soil organic matter (SOM). Under very acidic conditions, abiotic iodination of SOM was predominant, whereas under less acidic conditions (pH ≥5), microbial enzymatically assisted iodination of SOM was predominant. The organic-rich soil in the vadose zone of F-Area thus acts primarily as a "sink," but may also behave as a potentially important vector for mobile radioiodine in an on-off carrying mechanism. Generally the riparian zone provides as a natural attenuation zone that greatly reduces radioiodine release.
HbA1c underestimates glycaemia in HIV-infected patients and its use in patients with risk factors for HbA1c discordance may lead to under-diagnosis and to under-treatment of established diabetes mellitus.
Objectives
To identify the minimum inhibitory concentration (MIC) distribution for commonly used topical antibiotics from isolates of dogs and horses with ulcerative bacterial keratitis, and to investigate changes in MIC values over time and following treatment with topical fluoroquinolones.
Animals studied
One hundred thirty‐four client‐owned dogs and 20 client‐owned horses with bacterial ulcerative keratitis.
Procedure
Minimum inhibitory concentration values for 14 topical antibiotics were reported for canine and equine cases of bacterial ulcerative keratitis between 2013 and 2018. Changes in MIC values over time and after treatment with topical fluoroquinolones were reported.
Results
The three most common bacterial genera isolated were Staphylococcus, Streptococcus, and Pseudomonas. Together, these represented 79.4% of canine cases and 77.4% of equine cases. Overall, isolates from horses tended to have lower MIC values, as did Pseudomonas isolates from both dogs and horses, compared to other bacterial genera, especially Staphylococcus spp. The MIC values of erythromycin and trimethoprim sulfa for Staphylococcus spp., and the MIC value of moxifloxacin for Pseudomonas significantly increased over time. Previous topical fluoroquinolone use was associated with a significant increase in the MIC value of ofloxacin in canine and equine Staphylococcus isolates and current topical fluoroquinolone use was associated with significant increases in the MIC values of ciprofloxacin, moxifloxacin, and ofloxacin in canine Staphylococcus isolates.
Conclusion
Patients previously or currently treated with topical fluoroquinolones, particularly in Staphylococcus infections, may require alternative antibiotics or additional antibiotic classes other than fluoroquinolones. Bacterial culture with MIC susceptibility testing should be highly recommended when a Staphylococcal infection is suspected.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.