The 18kDa Translocator Protein (TSPO) is the most commonly used tissue-specific marker of inflammation in positron emission tomography (PET) studies. It is expressed in myeloid cells such as microglia and macrophages, and in rodent myeloid cells expression increases with cellular activation. We assessed the effect of myeloid cell activation on TSPO gene expression in both primary human and rodent microglia and macrophages in vitro, and also measured TSPO radioligand binding with 3H-PBR28 in primary human macrophages. As observed previously, we found that TSPO expression increases (∼9-fold) in rodent-derived macrophages and microglia upon pro-inflammatory stimulation. However, TSPO expression does not increase with classical pro-inflammatory activation in primary human microglia (fold change 0.85 [95% CI 0.58–1.12], p = 0.47). In contrast, pro-inflammatory activation of human monocyte-derived macrophages is associated with a reduction of both TSPO gene expression (fold change 0.60 [95% CI 0.45–0.74], p = 0.02) and TSPO binding site abundance (fold change 0.61 [95% CI 0.49–0.73], p < 0.0001). These findings have important implications for understanding the biology of TSPO in activated macrophages and microglia in humans. They are also clinically relevant for the interpretation of PET studies using TSPO targeting radioligands, as they suggest changes in TSPO expression may reflect microglial and macrophage density rather than activation phenotype.
The translocator protein (TSPO) is a mitochondrial membrane protein, of as yet uncertain function. Its purported high expression on activated macrophages, has lent utility to TSPO targeted molecular imaging in the form of positron emission tomography (PET), as a means to detect and quantify inflammation in vivo. However, existing literature regarding TSPO expression on human activated macrophages is lacking, mostly deriving from brain tissue studies, including studies of brain malignancy, and inflammatory diseases such as multiple sclerosis. Here, we utilized three human sources of monocyte derived macrophages (MDM), from THP-1 monocytes, healthy peripheral blood monocytes and synovial fluid monocytes from patients with rheumatoid arthritis, to undertake a detailed investigation of TSPO expression in activated macrophages. In this work, we demonstrate a consistent down-regulation of TSPO mRNA and protein in macrophages activated to a pro-inflammatory, or ‘M1’ phenotype. Conversely, stimulation of macrophages to an M2 phenotype with IL-4, dexamethasone or TGF-β1 did not alter TSPO expression, regardless of MDM source. The reasons for this are uncertain, but our study findings add some supporting evidence for recent investigations concluding that TSPO may be involved in negative regulation of inflammatory responses in macrophages.
PET radioligands targeted to translocator protein (TSPO) offer a highly sensitive and specific means of imaging joint inflammation in rheumatoid arthritis (RA). Through high expression of TSPO on activated macrophages, TSPO PET has been widely reported in several studies of RA as a means of imaging synovial macrophages in vivo. However, this premise does not take into account the ubiquitous expression of TSPO. This study aimed to investigate TSPO expression in major cellular constituents of RA pannus-monocytes, macrophages, fibroblastlike synoviocytes (FLS cells), and CD4-positive (CD4+) T lymphocytes (T cells)-to more accurately interpret TSPO PET signal from RA synovium. Three RA patients and 3 healthy volunteers underwent PET of both knees using the TSPO radioligandC-PBR28. Through H-PBR28 autoradiography and immunostaining of synovial tissue in 6 RA patients and 6 healthy volunteers, cellular expression of TSPO in synovial tissue was evaluated. TSPO messenger RNA expression andH-PBR28 radioligand binding was assessed using in vitro monocytes, macrophages, FLS cells, and CD4+ T cells. C-PBR28 PET signal was significantly higher in RA joints than in healthy joints (average SUV, 0.82 ± 0.12 vs. 0.03 ± 0.004; < 0.01). Further, H-PBR28-specific binding in synovial tissue was approximately 10-fold higher in RA patients than in healthy controls. Immunofluorescence revealed TSPO expression on macrophages, FLS cells, and CD4+ T cells. The in vitro study demonstrated the highest TSPO messenger RNA expression andH-PBR28-specific binding in activated FLS cells, nonactivated M0 macrophages, and activated M2 reparative macrophages, with the least TSPO expression being in activated and nonactivated CD4+ T cells. To our knowledge, this study was the first evaluation of cellular TSPO expression in synovium, with the highest TSPO expression and PBR28 binding being found on activated synovial FLS cells and M2 macrophages. TSPO-targeted PET may therefore have a unique sensitivity in detecting FLS cells and macrophage-predominant inflammation in RA, with potential utility for assessing treatment response in trials using novel FLS-cell-targeted therapies.
Nanoparticles (NPs) may come into contact with circulating blood elements including platelets following inhalation and translocation from the airways to the bloodstream or during proposed medical applications. Studies with model polystyrene latex nanoparticles (PLNPs) have shown that NPs are able to induce platelet aggregation in vitro suggesting a poorly defined potential mechanism of increased cardiovascular risk upon NP exposure. We aimed to provide insight into the mechanisms by which NPs may increase cardiovascular risk by determining the impact of a range of concentrations of PLNPs on platelet activation in vitro and in vivo and identifying the signaling events driving NP-induced aggregation. Model PLNPs of varying nano-size (50 and 100 nm) and surface chemistry [unmodified (uPLNP), amine-modified (aPLNP) and carboxyl-modified (cPLNP)] were therefore examined using in vitro platelet aggregometry and an established mouse model of platelet thromboembolism. Most PLNPs tested induced GPIIb/IIIa-mediated platelet aggregation with potencies that varied with both surface chemistry and nano-size. Aggregation was associated with signaling events, such as granule secretion and release of secondary agonists, indicative of conventional agonist-mediated aggregation. Platelet aggregation was associated with the physical interaction of PLNPs with the platelet membrane or internalization. 50 nm aPLNPs acted through a distinct mechanism involving the physical bridging of adjacent non-activated platelets leading to enhanced agonist-induced aggregation in vitro and in vivo. Our study suggests that should they translocate the pulmonary epithelium, or be introduced into the blood, NPs may increase the risk of platelet-driven events by inducing or enhancing platelet aggregation via mechanisms that are determined by their distinct combination of nano-size and surface chemistry.
Summary.Background: There is a proven link between exposure to traffic-derived particulate air pollution and the incidence of platelet-driven cardiovascular diseases. It is suggested that inhalation of small, nanosized particles increases cardiovascular risk via toxicological and inflammatory processes and translocation of nanoparticles into the bloodstream has been shown in experimental models. We therefore investigated the ability of diesel exhaust particles (DEP) to interact physically and functionally with platelets. Methods: The interaction of DEP and carbon black (CB) with platelets was examined by transmission electron microscopy (TEM), whereas the functional consequences of exposure were assessed by measuring in vitro and in vivo platelet aggregation via established methods. Results: Both DEP and CB were internalized and seen in proximity with the open canalicular system in platelets. DEP induced platelet aggregation in vitro whereas CB had no effect. DEP induced Ca 2+ release, dense granule secretion and surface P-selectin expression, but not toxicologic membrane disruption. Low concentrations of DEP potentiated agonist-induced platelet aggregation in vitro and in vivo. Conclusions: DEP associate physically with platelets in parallel with a Ca 2+ -mediated aggregation response displaying the conventional features of agonist-induced aggregation. The ability of DEP to enhance the aggregation response to platelet stimuli would be expected to increase the incidence of platelet-driven cardiovascular events should they be inhaled and translocate into the blood. This study provides a potential mechanism for the increased thrombotic risk associated with exposure to ambient particulate air pollution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.