In the past few decades, great conceptual and technological advances have been made in the field of toxicology, but animal model-based research still remains one of the most widely used and readily available tools for furthering our current knowledge. However, animal models are not perfect in predicting all systemic toxicity in humans. Extrapolating animal data to accurately predict human toxicities remains a challenge, and researchers are obligated to question the appropriateness of their chosen animal model. This paper provides an assessment of the utility of the methionine- and choline-deficient (MCD) diet fed animal model in reflecting human nonalcoholic steatohepatitis (NASH) and the potential risks of adverse drug reactions and toxicities that are associated with the disease. As a commonly used NASH model, the MCD model fails to exhibit most metabolic abnormalities in a similar manner to the human disease. The MCD model, on the other hand, closely resembles human NASH histology and reflects signatures of drug transporter alterations in humans. Due to the nature of the MCD model, it should be avoided in studies of NASH pathogenesis, metabolic parameter evaluation, and biomarker identification. But it can be used to accurately predict altered drug disposition due to NASH-associated transporter alterations.
Alcohol metabolism is a well-characterized biological process that is dominated by the alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) families. Nonalcoholic steatohepatitis (NASH) is the advanced inflammatory stage of nonalcoholic fatty liver disease (NAFLD) and is known to alter the metabolism and disposition of numerous drugs. The purpose of this study was to investigate the alterations in alcohol metabolism processes in response to human NASH progression. Expression and function of ADHs, ALDHs, and catalase were examined in normal, steatosis, NASH (fatty) and NASH (not fatty) human liver samples. ALDH4A1 mRNA was significantly decreased in both NASH groups, while no significant changes were observed in the mRNA levels of other alcohol-related enzymes. The protein levels of ADH1A, ADH1B, and ADH4 were each decreased in the NASH groups, which was consistent with a decreased overall ADH activity. The protein level of ALDH2 was significantly increased in both NASH groups, while ALDH1A1 and ALDH1B1 were only decreased in NASH (fatty) samples. ALDH activity represented by oxidation of acetaldehyde was decreased in the NASH (fatty) group. The protein level of catalase was decreased in both NASH groups, though activity was unchanged. Furthermore, the significant accumulation of 4-hydroxynonenal protein adduct in NASH indicated significant oxidative stress and a potential reduction in ALDH activity. Collectively, ADH and ALDH expression and function are profoundly altered in the progression of NASH, which may have a notable impact on ADH- and ALDH-associated cellular metabolism processes and lead to significant alterations in drug metabolism mediated by these enzymes.
Microcystin-LR (MCLR) is a cyanotoxin produced by blue-green algae that causes liver and kidney toxicities. MCLR toxicity is dependent on cellular uptake through the organic anion transporting polypeptide (OATP) transporters. Nonalcoholic fatty liver disease (NAFLD) progresses through multiple stages, alters expression of hepatic OATPs, and is associated with chronic kidney disease. The purpose of this study was to determine whether NAFLD increases systemic exposure to MCLR and influences acute liver and kidney toxicities. Rats were fed a control diet or two dietary models of NAFLD; methionine and choline deficient (MCD) or high fat/high cholesterol (HFHC). Two studies were performed in these groups: 1) a single dose intravenous toxicokinetic study (20 μg/kg), and 2) a single dose intraperitoneal toxicity study (60 μg/kg). Compared to control rats, plasma MCLR area under the concentration-time curve (AUC) in MCD rats doubled, whereas biliary clearance (Cl bil) was unchanged; in contrast, plasma AUC in HFHC rats was unchanged, whereas Cl bil approximately doubled. Less MCLR bound to PP2A was observed in the liver of MCD rats. This shift in exposure decreased the severity of liver pathology only in the MCD rats after a single toxic dose of MCLR (60 μg/kg). In contrast, the single toxic dose of MCLR increased hepatic inflammation, plasma cholesterol, proteinuria, and urinary KIM1 in HFHC rats more than MCLR exposed control rats. In conclusion, rodent models of NAFLD alter MCLR toxicokinetics and acute toxicity and may have implications for liver and kidney pathologies in NAFLD patients.
Disease progression to nonalcoholic steatohepatitis (NASH) has profound effects on the expression and function of drug-metabolizing enzymes and transporters, which provide a mechanistic basis for variable drug response. Breast cancer resistance protein (BCRP), a biliary efflux transporter, exhibits increased liver mRNA expression in NASH patients and preclinical NASH models, but the impact on function is unknown. It was shown that the transport capacity of multidrug resistance protein 2 (MRP2) is decreased in NASH. SN-38, the active irinotecan metabolite, is reported to be a substrate for Bcrp, whereas SN-38 glucuronide (SN-38G) is a Mrp2 substrate. The purpose of this study was to determine the function of Bcrp in NASH through alterations in the disposition of SN-38 and SN-38G in a knockout (Bcrp KO) and methionine- and choline-deficient (MCD) model of NASH. Sprague Dawley [wild-type (WT)] rats and Bcrp rats were fed either a methionine- and choline-sufficient (control) or MCD diet for 8 weeks to induce NASH. SN-38 (10 mg/kg) was administered i.v., and blood and bile were collected for quantification by liquid chromatography-tandem mass spectrometry. In Bcrp rats on the MCD diet, biliary efflux of SN-38 decreased to 31.9%, and efflux of SN-38G decreased to 38.7% of control, but WT-MCD and KO-Control were unaffected. These data indicate that Bcrp is not solely responsible for SN-38 biliary efflux, but rather implicate a combined role for BCRP and MRP2. Furthermore, the disposition of SN-38 and SN-38G is altered by Bcrp and NASH in a gene-by-environment interaction and may result in variable drug response to irinotecan therapy in polymorphic patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.