Noonan syndrome (NS) is a relatively common genetic disorder, characterized by typical facies, short stature, developmental delay, and cardiac abnormalities. Known causative genes account for 70-80% of clinically diagnosed NS patients, but the genetic basis for the remaining 20-30% of cases is unknown. We performed nextgeneration sequencing on germ-line DNA from 27 NS patients lacking a mutation in the known NS genes. We identified gainof-function alleles in Ras-like without CAAX 1 (RIT1) and mitogenactivated protein kinase kinase 1 (MAP2K1) and previously unseen loss-of-function variants in RAS p21 protein activator 2 (RASA2) that are likely to cause NS in these patients. Expression of the mutant RASA2, MAP2K1, or RIT1 alleles in heterologous cells increased RAS-ERK pathway activation, supporting a causative role in NS pathogenesis. Two patients had more than one disease-associated variant. Moreover, the diagnosis of an individual initially thought to have NS was revised to neurofibromatosis type 1 based on an NF1 nonsense mutation detected in this patient. Another patient harbored a missense mutation in NF1 that resulted in decreased protein stability and impaired ability to suppress RAS-ERK activation; however, this patient continues to exhibit a NS-like phenotype. In addition, a nonsense mutation in RPS6KA3 was found in one patient initially diagnosed with NS whose diagnosis was later revised to Coffin-Lowry syndrome. Finally, we identified other potential candidates for new NS genes, as well as potential carrier alleles for unrelated syndromes. Taken together, our data suggest that nextgeneration sequencing can provide a useful adjunct to RASopathy diagnosis and emphasize that the standard clinical categories for RASopathies might not be adequate to describe all patients.human genetics | developmental diseases | whole exome sequencing | PTPN11 | RAS
Noonan syndrome (NS) is an autosomal-dominant genetic disorder associated with highly variable features, including heart disease, short stature, minor facial anomalies and learning disabilities. Recent gene discoveries have laid the groundwork for exploring whether variability in the NS phenotype is related to differences at the genetic level. In this study, we examine the influence of both genotype and nongenotypic factors on cognitive functioning. Data are presented from 65 individuals with NS (ages 4-18) who were evaluated using standardized measures of intellectual functioning. The cohort included 33 individuals with PTPN11 mutations, 6 individuals with SOS1 mutations, 1 individual with a BRAF mutation and 25 participants with negative, incomplete or no genetic testing. Results indicate that genotype differences may account for some of the variation in cognitive ability in NS. Whereas cognitive impairments were common among individuals with PTPN11 mutations and those with unknown mutations, all of the individuals with SOS1 mutations exhibited verbal and nonverbal cognitive skills in the average range or higher. Participants with N308D and N308S mutations in PTPN11 also showed no (or mild) cognitive delays. Additional influences such as hearing loss, motor dexterity and parental education levels accounted for significant variability in cognitive outcomes. Severity of cardiac disease was not related to cognitive functioning. Our results suggest that some NS-causing mutations have a more marked impact on cognitive skills than others.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with đź’™ for researchers
Part of the Research Solutions Family.