A long-standing question in the study of long-term memory is how a memory trace persists for years when the proteins that initiated the process turn over and disappear within days. Previously, we postulated that self-sustaining amyloidogenic oligomers of cytoplasmic polyadenylation element-binding protein (CPEB) provide a mechanism for the maintenance of activity-dependent synaptic changes and, thus, the persistence of memory. Here, we found that the Drosophila CPEB Orb2 forms amyloid-like oligomers, and oligomers are enriched in the synaptic membrane fraction. Of the two protein isoforms of Orb2, the amyloid-like oligomer formation is dependent on the Orb2A form. A point mutation in the prion-like domain of Orb2A, which reduced amyloid-like oligomerization of Orb2, did not interfere with learning or memory persisting up to 24 hr. However the mutant flies failed to stabilize memory beyond 48 hr. These results support the idea that amyloid-like oligomers of neuronal CPEB are critical for the persistence of long-term memory.
Prions are proteins that can assume at least two distinct conformational states, one of which is dominant and self-perpetuating. Previously we found that a translation regulator CPEB from Aplysia, ApCPEB, that stabilizes activity-dependent changes in synaptic efficacy can display prion-like properties in yeast. Here we find that, when exogenously expressed in sensory neurons, ApCPEB can form an amyloidogenic self-sustaining multimer, consistent with it being a prion-like protein. In addition, we find that conversion of both the exogenous and the endogenous ApCPEB to the multimeric state is enhanced by the neurotransmitter serotonin and that an antibody that recognizes preferentially the multimeric ApCPEB blocks persistence of synaptic facilitation. These results are consistent with the idea that ApCPEB can act as a self-sustaining prion-like protein in the nervous system and thereby might allow the activity-dependent change in synaptic efficacy to persist for long periods of time.
In the study of long-term memory, how memory persists is a fundamental and unresolved question. What are the molecular components of the long-lasting memory trace? Previous studies in Aplysia and Drosophila have found that a neuronal variant of a RNA-binding protein with a self-perpetuating prion-like property, cytoplasmic polyadenylation element binding protein, is required for the persistence of long-term synaptic facilitation in the snail and long-term memory in the fly. In this study, we have identified the mRNA targets of the Drosophila neuronal cytoplasmic polyadenylation element binding protein, Orb2. These Orb2 targets include genes involved in neuronal growth, synapse formation, and intriguingly, protein turnover. These targets suggest that the persistent form of the memory trace might be comprised of molecules that maintain a sustained, permissive environment for synaptic growth in an activated synapse.protein synthesis | synaptic plasticity | memory
How learned experiences persist as memory for a long time is an important question. In Drosophila the persistence of memory is dependent upon amyloid-like oligomers of the Orb2 protein. However, it is not clear how the conversion of Orb2 to the amyloid-like oligomeric state is regulated. The Orb2 has two protein isoforms, and the rare Orb2A isoform is critical for oligomerization of the ubiquitous Orb2B isoform. Here, we report the discovery of a protein network comprised of protein phosphatase 2A (PP2A), Transducer of Erb-B2 (Tob), and Lim Kinase (LimK) that controls the abundance of Orb2A. PP2A maintains Orb2A in an unphosphorylated and unstable state, whereas Tob-LimK phosphorylates and stabilizes Orb2A. Mutation of LimK abolishes activity-dependent Orb2 oligomerization in the adult brain. Moreover, Tob-Orb2 association is modulated by neuronal activity and Tob activity in the mushroom body is required for stable memory formation. These observations suggest that the interplay between PP2A and Tob-LimK activity may dynamically regulate Orb2 amyloid-like oligomer formation and the stabilization of memories.
P2P-R is a nuclear protein with potential functional roles in the control of gene expression and mitosis. The P2P-R protein also interacts with the p53 and Rb1 tumor suppressor proteins. To search for additional functional associations of P2P-R, we employed the WebQTL database that contains the results of cDNA microarray analysis on forebrain, cerebellum, and hematopoietic stem cell (HSC) specimens of multiple BXD recombinant inbred strains of mice. Using WebQTL, gene products were identified that show genetically based coexpression with P2P-R. Initial studies identified general groups of mRNAs that share common functional roles and high covariation in expression with P2P-R. These functional groups involved the regulation of transcription, nucleotide binding, translation control, and ion transport. The findings related to translational mechanisms were further evaluated. In HSCs, expression of P2P-R mRNA demonstrates an impressive expression correlation with a group of gene products associated with translation; high expression of P2P-R specifically was associated with decreased expression of 29 ribosomal protein mRNAs. In all three tissues that were screened using the WebQTL database, a strong positive expression covariance between P2P-R and the Pum2 gene product also was observed. PUM2 is a member of the highly conserved Puf family of RNA binding proteins that often function as gene-specific translation regulators. The ability of Puf proteins to repress translation is mediated by their binding to specific elements located in the 3' untranslated region (UTR) of their target mRNAs. To assess the functional significance of the strong genetic correlation in expression of P2P-R and PUM2, the 3' UTR of the P2P-R mRNA was analyzed and found to contain one perfect consensus and two near-perfect consensus PUM2 binding sequences. PUM2 pull-down methods combined with reverse transcription and RT-PCR confirmed that PUM2 does indeed bind P2P-R mRNA. These results suggest that P2P-R expression may be translationally regulated by PUM2 and that P2P-R may modulate translation by influencing ribosomal protein gene expression. This study represents the first description of a RNA target for mammalian Puf proteins and the first molecular confirmation of information obtained using the WebQTL database.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.