Calreticulin (CALR) +1 frameshift mutations in exon 9 are prevalent in myeloproliferative neoplasms. Mutant CALRs possess a new C-terminal sequence rich in positively charged amino acids, leading to activation of the thrombopoietin receptor (TpoR/MPL). We show that the new sequence endows the mutant CALR with rogue chaperone activity, stabilizing a dimeric state and transporting TpoR and mutants thereof to the cell surface in states that would not pass quality control; this function is absolutely required for oncogenic transformation. Mutant CALRs determine traffic via the secretory pathway of partially immature TpoR, as they protect N117-linked glycans from further processing in the Golgi apparatus. A number of engineered or disease-associated TpoRs such as TpoR/MPL R102P, which causes congenital thrombocytopenia, are rescued for traffic and function by mutant CALRs, which can also overcome endoplasmic reticulum retention signals on TpoR. In addition to requiring N-glycosylation of TpoR, mutant CALRs require a hydrophobic patch located in the extracellular domain of TpoR to induce TpoR thermal stability and initial intracellular activation, whereas full activation requires cell surface localization of TpoR. Thus, mutant CALRs are rogue chaperones for TpoR and traffic-defective TpoR mutants, a function required for the oncogenic effects.
Highlights d Genes encoding highly abundant secreted proteins define adult gland types d Gland-specific activity of transcriptional regulators contributes to proteome diversity d Differential retention of fetal genes drives functional diversity in adult glands d Cellular heterogeneity underlies gland-specific protein secretions
Background Mutant calreticulins carrying the sequence translated after a +1 frameshift at the C-terminus are major drivers of myeloproliferative neoplasms (MPNs). These mutant CALRs bind and activate TpoR/MPL in cells co-expressing TpoR and mutant CALRs, resulting in persistent JAK2-STAT5 signaling. Whether mutant CALR proteins are secreted, thus acting in trans on other cells, is not known. Aims Our objectives were to: 1) assess the direct TpoR-mutant CALR interaction both when expressed in the same or in different cells; 2) determine whether mutant CALRs are secreted; and 3) determine whether mutant CALR can act as extracellular cytokines. Methods Engineered CALR and TpoR mutants were analyzed by a combination of biochemical approaches (bioluminescence resonance energy transfer, recombinant protein production), functional assays (cell growth and transcriptional assays, flow cytometry, primary megakaryocytic clonogenic assay, analysis of CALR del52 knock-in mice) and cell imaging (confocal microscopy, flow cytometry and immuno-gold electron microscopy). Secreted CALRs were determined by ELISA using mutant specific antibodies. Results 1) Two systems provided evidence that mutant CALRs and TpoR directly interact. First, using Nano-BRET in cells co-expressing N-terminally fused TpoR or EpoR with Nano-luciferase and mutant or WT CALR C-terminally tagged with HaloTag that is bound to the 618-ligand fluorophore, we show that TpoR and mutant CALRs interact in a complex whether the two proteins are within 10 nm. The interaction does not occur between TpoR and WT CALR, or between EpoR and mutant or WT CALRs. Second, expressing mutant CALR and TpoR extracellular domain in S2 Drosophila Schneider cells showed that stable complex formation requires immature high mannose structure on TpoR. Lastly, we could detect surface expression of the TpoR/CALRdel52 complex using proximity ligation assay with anti-TpoR and anti-mutant CALR antibodies in CRISPR/Cas9 engineered UT7/Tpo cells that express endogenous mutant CALR and TpoR levels. 2) We used flow cytometry, confocal immunofluorescence and immunogold electron microscopy and could show that mutant CALRs are trafficking via cis-, medial- and trans-Golgi to the cell-surface and are secreted, independently from TpoR expression. Importantly, mutant CALRs are also secreted in CALR mutated MPN patients as determined by mutant CALR-specific ELISA assay in patient plasma (mean plasma level 24.6 ng/ml, range 0-156.5 ng/ml). In the 113 evaluated CALR mutated patients from different centers the plasma mutant CALR levels correlated with CALR mutant allele burden (P<0.001). Secreted mutant CALR can also be found in plasma from knock-in CALR del52 mice. 3) We show that recombinant mutant CALR can act as a cytokine and specifically stimulate JAK2-STAT5 pathway in cells that carry the TpoR at the surface. Using Nano-BRET, we could demonstrate that extracellular mutant Halo-tagged CALR can specifically bind in trans to the cell-surface TpoR fused with Nano-luciferase, but not to EpoR fused with Nano-luciferase. This binding and the subsequent JAK2 activation were obtained at levels of around 100-150 ng/ml only in cells exposing at the cell-surface TpoR with at least one immature N-linked sugar. This can be accomplished by co-expressing in the reporter cells non-tagged mutant CALR, which will promote cell-surface localization of partially immature TpoR. The effect of exogenous mutant CALR could involve both stabilization of the endogenous cell-surface mutant CALR-TpoR complexes and binding to unoccupied immature TpoRs. Conclusion We show that mutant CALRs directly interact with TpoR and also are secreted and can act as rogue cytokines, leading to activation of cells carrying TpoR. Activation of TpoR in trans is efficient at mutant CALR levels similar to those detected in patients when target cells co-express heterozygous mutant CALR and TpoR, where endogenous mutant CALR transports to the surface TpoR with immature glycosylation. Thus, secreted mutant CALRs is predicted to expand the MPN clone. Given that cell-surface mutant CALR in TpoR expressing cells is crucial for oncogenicity, and that mutant CALRs are also secreted correlating with allele burden, we discuss how antibodies and other immunotherapy approaches could specifically target the mutant CALR MPN clone. Disclosures Xu: MyeloPro Research and Diagnostics GmBH: Employment. Hug:MyeloPro Diagnostics and Research GmbH: Employment. Gisslinger:Janssen: Consultancy, Honoraria; AOP Orphan: Consultancy, Honoraria, Research Funding; Celgene: Consultancy, Honoraria; Takeda: Consultancy, Honoraria; Shire: Honoraria; Novartis: Consultancy, Honoraria, Research Funding. Kralovics:MyeloPro Diagnostics and Research GmbH: Equity Ownership. Constantinescu:Personal Genetics: Membership on an entity's Board of Directors or advisory committees; Novartis: Consultancy; Novartis: Membership on an entity's Board of Directors or advisory committees; AlsaTECH: Equity Ownership; Novartis: Honoraria; MyeloPro Research and Diagnostics GmbH: Equity Ownership.
Mutant calreticulin (CALR) proteins resulting from a -1/+2 frameshifting mutation of the CALR exon 9 carry a novel C-terminal amino-acid sequence and drive the development of myeloproliferative neoplasms (MPNs). Mutant CALRs were shown to interact with and activate the thrombopoietin receptor (TpoR/MPL) in the same cell. We report that mutant CALR proteins are secreted and can be found in patient plasma at levels up to 160ng/mL, with a mean of 25.64ng/mL. Plasma mutant CALR is found in complex with soluble Transferrin Receptor 1 (sTFRC) that acts as a carrier protein and increases CALR mutant half-life. Recombinant mutant CALR proteins bound and activated the TpoR on cell lines and primary megakaryocytic progenitors from CALR-mutated patients where they drive Tpo-independent colony formation. Importantly, the CALR-sTFRC complex remains functional for TpoR activation. By bioluminescence resonance energy transfer assay, we show that mutant CALR proteins produced in one cell can specifically interact in trans with the TpoR on a target cell. Cells that carry both TpoR and mutant CALR are hypersensitive to exogenous CALR mutant proteins in comparison to cells that only carry TpoR, and respond to levels of CALR mutant proteins similar to those in patient plasma. This is consistent with CALR mutated cells exposing at the cell-surface TpoR carrying immature N-linked sugars. Thus, secreted mutant CALR proteins will act more specifically on the MPN clone. In conclusion, a chaperone, CALR, can turn into a rogue cytokine through somatic mutation of its encoding gene.
Somatic mutations of calreticulin (CALR)have been identified as one of the main disease drivers of myeloproliferative neoplasms (MPNs), suggesting that developing drugs targeting mutant CALR is of great significance. Site-directed mutagenesis in the N-glycan binding domain (GBD)abolishes the ability of mutant CALRto oncogenically activate the thrombopoietin receptor (MPL).We thus hypothesized that a small molecule targeting the GBD might inhibit the oncogenicity of the mutant CALR. Using an in-silico molecular docking study, we identified candidate binders to the GBD of CALR. Further experimental validation of the hits identified a group of catechols inducing selective growth inhibitory effect on cells that depend on oncogenic CALRs for survival and proliferation. Apoptosis-inducing effects by the compound were significantly higher in the CALR mutated cells than in CALR wild type cells. Additionally, knockout or C-terminal truncation of CALR abolished the drug hypersensitivity in CALR mutated cells. We experimentally confirmed the direct binding of the selected compound to CALR, the disruption of the mutant CALR-MPL interaction, the inhibition of the JAK2-STAT5 pathway, and reduction of intracellular level of mutant CALR upon the drug treatment. Our data conclude that small molecules targeting the GBD of CALR can selectively kill CALR mutated cells by disrupting the CALR-MPL interaction and inhibiting the oncogenic signaling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.