In all living organisms, appropriate reactions to unfavorable environmental conditions (stress factors) are observed. When transcription in eukaryotic cells is controlled by extracellular signals, at least one signaling component has to be translocated from the cytoplasm to the nucleus in a signal-dependent manner. The signaling components may be of low molecular weight (second messengers) or protein members of the signaling cascades. Examples for the latter are MAP kinases, for example, the p42 MAP kinase and p44 ERK1 on mitogenic stimulation (Chen et al. 1992).Regulated nuclear translocation is also found widely at the level of transcription factors and is achieved by either cytoplasmic anchoring or activation of nuclear localization signals (NLS) by unmasking or modification (Jans 1995;Gö rlich and Mattaj 1996;Nigg 1997). A prominent example of this type of control is provided by NF-B. A rapid transcriptional response to a variety of stress stimuli is elicited by phosphorylation of the inhibitory factor IB followed by its dissociation from the transcription factor and destruction. This leads to unmasking of the NF-B nuclear localization signal and to the subsequent translocation to the nucleus (Siebenlist, et al. 1995;Baldwin 1996). Another example is NF-ATc, a transcription factor involved in early immune responses that is translocated to the nucleus on dephosphorylation by Ca 2+
The transcriptional program of yeast cells undergoes dramatic changes during the shift from fermentative growth to respiratory growth. A large part of this response is mediated by the stress responsive transcription factor Msn2. During glucose exhaustion, Msn2 is activated and concentrated in the nucleus. Simultaneously, Msn2 protein levels also drop significantly under this condition. Here we show that the decrease in Msn2 concentration is due to its increased degradation. Moreover, Msn2 levels are also reduced under chronic stress or low protein kinase A (PKA) activity, both conditions that cause a predominant nuclear localization of Msn2. Similar effects were found in msn5 mutant cells that block Msn2 nuclear export. To approximate the effect of low PKA activity on Msn2, we generated a mutant form with alanine substitutions in PKA phosphorylation sites. High expression of this Msn2 mutant is detrimental for growth, suggesting that the increased degradation of nuclear Msn2 might be necessary to adapt cells to low PKA conditions after the diauxic shift or to allow growth under chronic stress conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.