Abstract. The anelastic structure of the region surrounding the Tonga slab and Lau back arc spreading center in the southwest Pacific is studied using data from 12 broadband island stations and 30 ocean bottom seismographs. Two differential attenuation methods determine fit* over the frequency band 0.1 to 3.5 Hz for earthquakes in the Tonga slab. The S-P method measures the difference in spectral decay between P and S waves arriving at the same station. The P-P method measures the difference in spectral decay for P waves with different paths through the upper mantle. Eight hundred sixty phase pairs are used to invert for two-dimensional 1/Qa structure using a nonnegative least squares algorithm. A grid search method determines the Qa/Q• ratio most compatible with both the S-P and P-P differential measurements. The highest attenuation (Qa = 90) is found within the upper 100 km beneath the active portions of the Lau Basin extending westward to the Lau Ridge. These regions probably delineate the source region for the back arc spreading center magmas, expected to be within the upper 100 km based on petrological considerations. The high attenuation regions also correlate well with zones of low P wave velocity determined by regional velocity tomography. Somewhat lower attenuation is found beneath the Fiji Plateau than beneath the Lau Basin. The entire back arc is characterized by a gradual decrease in attenuation to a depth of 300 to 400 km. The slab is imaged as a region of low attenuation (Qa > 900) material. A Qa/Qb ratio of 1.75 provides the best fit between the S-P and P-P data sets upon inversion. Spectral stacking shows no frequency dependence within the frequency band analyzed.
Abstract. We use recent P wave attenuation (Q•'•) and velocity (Vt,) tomographic models of the Tonga/Fiji region to obtain an empirical relation between attenuation and velocity for the upper mantle. The attenuation and velocity anomalies show a strong inverse correlation, allowing the determination of an empirical relationship. The relationship is similar to a predicted relation derived from laboratory experiments on peridotite and dunite, assuming the observed anomalies result from temperature variations. The results here suggest that the observed anomalies are generally consistent with the effect of temperature, and demonstrate that the combination of velocity and attenuation data provides powerful constraints on the physical state of upper mantle materials. We find that the chosen geotherm and activation energy has a strong effect on the position of the solidus within the seismic data.
We employed ambient-noise measurements to assess the potential for seismic site response in sediment-filled valleys that intersect beneath downtown Providence, Rhode Island. At eight valley stations and at two sites on an adjacent bedrock highland, we recorded ground motion from two types of sources: pile drivers at a local construction site and ambient microtremors. At all valley sites where sediment thicknesses exceed 10 m, spectral ratios contain amplitude peaks at frequencies of 1.5 to 3.0 Hz. In contrast, spectral ratios from the two sites on the bedrock highland where sediment cover is less than 4-m thick are relatively flat within this frequency range. A variety of borehole logs identified two fundamental sediment types (soft sediment and a consolidated glacial till) and were used to map layer thicknesses over the entire study region. Refraction data constrained P-wave velocity in the bedrock to be 3680 ± 160 m/sec and indicated two soft-sediment layers with P-wave velocities of 300 ± 50 and 1580 ± 120 m/sec. Using a one-dimensional reflection matrix technique, we matched the spectral-ratio peak observed at each valley site with the frequency of fundamental resonance predicted for local layer thicknesses and velocities. A positive correlation between the best-fitting soft-sediment velocities and bedrock depth may reflect greater compaction in the deepest sediments or a locally two-dimensional sediment resonance at the deepest sediment sites. We conclude that unconsolidated sediment layers under downtown Providence have the potential to amplify earthquake ground motion at frequencies damaging to engineered structures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.