OBJECT This study directly compares the number and severity of subconcussive head impacts sustained during helmet-only practices, shell practices, full-pad practices, and competitive games in a National Collegiate Athletic Association (NCAA) Division I-A football team. The goal of the study was to determine whether subconcussive head impact in collegiate athletes varies with practice type, which is currently unregulated by the NCAA. METHODS Over an entire season, a cohort of 20 collegiate football players wore impact-sensing mastoid patches that measured the linear and rotational acceleration of all head impacts during a total of 890 athletic exposures. Data were analyzed to compare the number of head impacts, head impact burden, and average impact severity during helmet-only, shell, and full-pad practices, and games. RESULTS Helmet-only, shell, and full-pad practices and games all significantly differed from each other (p ≤ 0.05) in the mean number of impacts for each event, with the number of impacts being greatest for games, then full-pad practices, then shell practices, and then helmet-only practices. The cumulative distributions for both linear and rotational acceleration differed between all event types (p < 0.01), with the acceleration distribution being similarly greatest for games, then full-pad practices, then shell practices, and then helmet-only practices. For both linear and rotational acceleration, helmet-only practices had a lower average impact severity when compared with other event types (p < 0.001). However, the average impact severity did not differ between any comparisons of shell and full-pad practices, and games. CONCLUSIONS Helmet-only, shell, and full-pad practices, and games result in distinct head impact profiles per event, with each succeeding event type receiving more impacts than the one before. Both the number of head impacts and cumulative impact burden during practice are categorically less than in games. In practice events, the number and cumulative burden of head impacts per event increases with the amount of equipment worn. The average severity of individual impacts is relatively consistent across event types, with the exception of helmet-only practices. The number of hits experienced during each event type is the main driver of event type differences in impact burden per athletic exposure, rather than the average severity of impacts that occur during the event. These findings suggest that regulation of practice equipment could be a fair and effective way to substantially reduce subconcussive head impact in thousands of collegiate football players.
Background: Concussion and repetitive head impact in sports has increased interest and concern for clinicians, scientists, and athletes. Lacrosse is the fastest growing sport in the United States, but the burden of head impact in lacrosse is unknown. Purpose: The goal of this pilot study was to quantify head impact associated with practicing and playing collegiate lacrosse while subjects were fitted with wearable accelerometers. Study Design: Descriptive epidemiology study. Methods: In a single year, a collegiate cohort of 14 women’s and 15 men’s lacrosse players wore mastoid-patch accelerometers to measure the frequency and severity of head impacts during official practices and games. Average impact severity, mean number of impacts, and cumulative acceleration were evaluated, stratified by sport and event type. Results: Men’s and women’s collegiate lacrosse players did not significantly differ in the number of head impacts received during games (11.5 for men vs 9.2 for women) or practices (3.1 vs 3.1). Men’s lacrosse players had significantly higher average head acceleration per impact during games compared with women (21.1g vs 14.7g) but not during practices (21.3g vs 18.1g). For both men and women, more impacts occurred during games than during practices (men, 11.5 vs 3.1; women, 9.2 vs 3.1), but impact severity did not significantly differ between events for either sport (men, 21.1g vs 21.3g; women, 14.7g vs 18.1g). Conclusion: The study data suggest a higher impact burden during games compared with practices, but this effect is driven by the quantity rather than severity of impacts. In contrast, sex-based effects in impact burden are driven by average impact severity rather than quantity. Data collected from larger multisite trials and/or different age groups could be used to inform ongoing debates, including headgear and practice regulations, that might appreciably affect the burden of head impacts in lacrosse. Clinical Relevance: While most head impacts do not result in a clinical diagnosis of concussion, evidence indicates that subconcussive head impacts may increase susceptibility to concussion and contribute to long-term neurodegeneration.
As concerns about head impact in American football have grown, similar concerns have started to extend to other sports thought to experience less head impact, such as soccer and lacrosse. However, the amount of head impact experienced in soccer and lacrosse is relatively unknown, particularly compared with the substantial amount of data from football. This pilot study quantifies and compares head impact from four different types of sports teams: college football, high school football, college soccer, and college lacrosse. During the 2013 and 2014 seasons, 61 players wore mastoid patch accelerometers to quantify head impact during official athletic events (i.e., practices and games). In both practices and games, college football players experienced the most or second-most impacts per athletic event, highest average peak resultant linear and rotational acceleration per impact, and highest cumulative linear and rotational acceleration per athletic event. For average peak resultant linear and rotational acceleration per individual impact, college football was followed by high school football, then college lacrosse, and then college soccer, with similar trends in both practices and games. In the four teams under study, college football players experienced a categorically higher burden of head impact. However, for cumulative impact burden, the high school football cohort was not significantly different from the college soccer cohort. The results suggest that head impact in sport substantially varies by both the type of sport (football vs. soccer vs. lacrosse) and level of play (college vs. high school).
Background:The effects of head impact in sports are of growing interest for clinicians, scientists, and athletes. Soccer is the most popular sport worldwide, but the burden of head impact in collegiate soccer is still unknown.Purpose:To quantify head impact associated with practicing and playing collegiate soccer using wearable accelerometers.Study Design:Descriptive epidemiological study.Methods:Mastoid patch accelerometers were used to quantify head impact in soccer, examining differences in head impact as a function of sex and event type (practice vs game). Seven female and 14 male collegiate soccer players wore mastoid patch accelerometers that measured head impacts during team events. Data were summarized for each athletic exposure, and statistical analyses evaluated the mean number of impacts, mean peak linear acceleration, mean peak rotational acceleration, and cumulative linear and rotational acceleration, each grouped by sex and event type.Results:There were no differences in the frequency or severity of head impacts between men’s and women’s soccer practices. For men’s soccer, games resulted in 285% more head impacts than practices, but there were no event-type differences in mean impact severity. Men’s soccer games resulted in more head impacts than practices across nearly all measured impact severities, which also resulted in men’s soccer games producing a greater cumulative impact burden.Conclusion:Similar to other sports, men’s soccer games have a greater impact burden when compared with practices, and this effect is driven by the quantity rather than severity of head impacts. In contrast, there were no differences in the quantity or severity of head impacts in men’s and women’s soccer practices. These data could prompt discussions of practical concern to collegiate soccer, such as understanding sex differences in head impact and whether games disproportionately contribute to an athlete’s head impact burden.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.