Recent advances in neural implicit surfaces for multiview 3D reconstruction primarily focus on improving largescale surface reconstruction accuracy, but often produce over-smoothed geometries that lack fine surface details. To address this, we present High-Resolution NeuS (HR-NeuS), a novel neural implicit surface reconstruction method that recovers high-frequency surface geometry while maintaining large-scale reconstruction accuracy. We achieve this by utilizing (i) multi-resolution hash grid encoding rather than positional encoding at high frequencies, which boosts our model's expressiveness of local geometry details; (ii) a coarse-to-fine algorithmic framework that selectively applies surface regularization to coarse geometry without smoothing away fine details; (iii) a coarse-to-fine grid annealing strategy to train the network. We demonstrate through experiments on DTU and BlendedMVS datasets that our approach produces 3D geometries that are qualitatively more detailed and quantitatively of similar accuracy compared to previous approaches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.