Human pancreatic fatty acid ethyl ester synthase has been isolated and purified 1200-fold to homogeneity, and its activities, binding properties, and N-terminal amino acid sequence indicate that it is a member of the lipase family. This 52-kDa monomeric protein is present at 0.6-1.2 mg/g of pancreas, and it catalyzes the synthesis and hydrolysis of ethyl oleate at rates of 2400 nmol mg-1 h-1 and 30 nmol mg-1 h-1, respectively. Kinetic analyses reveal a pronounced substrate specificity for unsaturated octadecanoic fatty acids, with ethyl ester synthetic rates of 2400 nmol mg-1 h-1 (linoleic), 2400 nmol mg-1 h-1 (oleic), 400 nmol mg-1 h-1 (arachidonic), 300 nmol mg-1 h-1 (palmitic), and 100 nmol mg-1 h-1 (stearic). Like cholesterol esterase, the enzyme binds to immobilized heparin, and this property was critical for its purification to homogeneity. Its N-terminal amino acid sequence is virtually identical with that reported for human triglyceride lipase, NH2-X-Glu-Val-Cys-5Tyr-Glu-Arg-Leu-Gly-10Cys-Phe-Ser-Asp- Asp-15Ser-Pro-Trp-Ser-Gly-20Ile, and it differs by only four residues from that reported for porcine pancreatic lipase. The synthase purified here also cleaves triglycerides, hydrolyzing triolein at a rate of 30 nmol mg-1 h-1, and this activity is stimulated by colipase and inhibited by sodium chloride. Conversely, commercially available porcine triglyceride lipase exhibits fatty acid ethyl ester synthase activity (1530 nmol mg-1 h-1) and hydrolyzes triolein at a rate of 23 nmol mg-1 h-1.(ABSTRACT TRUNCATED AT 250 WORDS)
The activities of pancreatic cholesterol esterase from calf and cow pancreas were examined in detail. A 1300-fold enhancement of enzymatic activity was found after maturation, even though cholesterol esterase activity levels in other organs did not change from the juvenile to the adult species. Radioimmunoassays also showed that the calf pancreas contained at least 100-fold less cholesterol esterase protein. Decreased amounts of protein were not due to enhanced proteolysis, since cytosol from cow pancreas degrades exogenously added cholesterol esterase faster than that from calf pancreas. Rather, enhancement of pancreatic cholesterol esterase activity associated with bovine maturation was the result of specific, increased synthesis of a 72-kDa enzyme. This labile 72-kDa cholesterol esterase species was purified to homogeneity by a two-step process in 75% yield and is the major form of bovine pancreatic cholesterol esterase (99%). A much less abundant 67-kDa species, accounting for less than 1% of total pancreatic cholesterol esterase activity, was also purified to homogeneity in a similar two-step process. These results demonstrate that a specific form of pancreatic cholesterol esterase is induced during maturation, and they bear importantly on understanding juvenile cholesterol metabolism as related to dietary absorption of this sterol.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.