This paper presents a model to predict the convergence quality of genetic algorithms based on the size of the population. The model is based on an analogy between selection in GAs and one-dimensional random walks. Using the solution to a classic random walk problem—the gambler's ruin—the model naturally incorporates previous knowledge about the initial supply of building blocks (BBs) and correct selection of the best BB over its competitors. The result is an equation that relates the size of the population with the desired quality of the solution, as well as the problem size and difficulty. The accuracy of the model is verified with experiments using additively decomposable functions of varying difficulty. The paper demonstrates how to adjust the model to account for noise present in the fitness evaluation and for different tournament sizes.
This paper proposes an algorithm that uses an estimation of the joint distribution of promising solutions in order to generate new candidate solutions. The algorithm is settled into the context of genetic and evolutionary computation and the algorithms based on the estimation of distributions. The proposed algorithm is called the Bayesian Optimization Algorithm (BOA). To estimate the distribution of promising solutions, the techniques for modeling multivariate data by Bayesian networks are used. The BOA identifies, reproduces, and mixes building blocks up to a specified order. It is independent of the ordering of the variables in strings representing the solutions. Moreover, prior information about the problem can be incorporated into the algorithm, but it is not essential. First experiments were done with additively decomposable problems with both nonoverlapping as well as overlapping building blocks. The proposed algorithm is able to solve all but one of the tested problems in linear or close to linear time with respect to the problem size. Except for the maximal order of interactions to be covered, the algorithm does not use any prior knowledge about the problem. The BOA represents a step toward alleviating the problem of identifying and mixing building blocks correctly to obtain good solutions for problems with very limited domain information.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.