The double copy is a map from non-abelian gauge theories to gravity, that has been demonstrated both for scattering amplitudes and exact classical solutions. In this study, we reconsider the double copy for exact solutions that are self-dual in either the gauge or gravity theory. In this case, one may formulate a general double copy in terms of a certain differential operator, which generates the gauge and gravity solutions from a harmonic function residing in a biadjoint scalar theory. As an illustration, we examine the single copy of the well-known Eguchi-Hanson instanton in gravity. The gauge field thus obtained represents an abelian-like object whose field is dipole-like at large distances, and which has no magnetic or electric charge.
The Weyl double copy is a procedure for relating exact solutions in biadjoint scalar, gauge and gravity theories, and relates fields in spacetime directly. Where this procedure comes from, and how general it is, have until recently remained mysterious. In this paper, we show how the current form and scope of the Weyl double copy can be derived from a certain procedure in twistor space. The new formalism shows that the Weyl double copy is more general than previously thought, applying in particular to gravity solutions with arbitrary Petrov types. We comment on how to obtain anti-self-dual as well as self-dual fields, and clarify some conceptual issues in the twistor approach.
The double copy relates scattering amplitudes and classical solutions in Yang-Mills theory, gravity, and related field theories. Previous work has shown that this has an explicit realisation in self-dual YM theory, where the equation of motion can be written in a form that maps directly to Plebański’s heavenly equation for self-dual gravity. The self-dual YM equation involves an area-preserving diffeomorphism algebra, two copies of which appear in the heavenly equation. In this paper, we show that this construction is a special case of a wider family of heavenly-type examples, by (i) performing Moyal deformations, and (ii) replacing the area-preserving diffeomorphisms with a less restricted algebra. As a result, we obtain a double-copy interpretation for hyper-Hermitian manifolds, extending the previously known hyper-Kähler case. We also introduce a double-Moyal deformation of the heavenly equation. The examples where the construction of Lax pairs is possible are manifestly consistent with Ward’s conjecture, and suggest that the classical integrability of the gravity-type theory may be guaranteed in general by the integrability of at least one of two gauge-theory-type single copies.
The classical double copy relating exact solutions of biadjoint scalar, gauge and gravity theories continues to receive widespread attention. Recently, a derivation of the exact classical double copy was presented, using ideas from twistor theory, in which spacetime fields are mapped to Cech cohomology classes in twistor space. A puzzle remains, however, in how to interpret the twistor double copy, in that it relies on somehow picking special representatives of each cohomology class. In this paper, we provide two alternative formulations of the twistor double copy using the more widely-used language of Dolbeault cohomology. The first amounts to a rewriting of the Cech approach, whereas the second uses known techniques for discussing spacetime fields in Euclidean signature. The latter approach indeed allows us to identify special cohomology representatives, suggesting that further application of twistor methods in exploring the remit of the double copy may be fruitful.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.