In this work, the suitability for the production of sustainable and lightweight materials with specific mechanical properties and potentially lower costs was studied. Agave fiber (AF), an agro-industrial waste, was used as a reinforcement and azodicarbonamide (ACA) as a chemical blowing agent (CBA) in the production of bilayer materials via rotational molding. The external layer was a composite of linear medium density polyethylene (LMDPE) with different AF contents (0–15 wt %), while the internal layer was foamed LMDPE (using 0–0.75 wt % ACA). The samples were characterized in terms of thermal, morphological and mechanical properties to obtain a complete understanding of the structure-properties relationships. Increases in the thicknesses of the parts (up to 127%) and a bulk density reduction were obtained by using ACA (0.75 wt %) and AF (15 wt %). Further, the addition of AF increased the tensile (23%) and flexural (29%) moduli compared to the neat LMDPE, but when ACA was used, lower values (75% and 56% for the tensile and flexural moduli, respectively) were obtained. Based on these results, a balance between mechanical properties and lightweight can be achieved by selecting the AF and ACA contents, as well as the performance and aesthetics properties of the rotomolded parts.
This study investigates the addition of ground tire rubber (GTR) into virgin polyamide 6 (PA6) to produce thermoplastic elastomer (TPE) blends. In particular, a wide range of GTR concentration (0–100% wt.) was possible by using a simple dry blending technique of the materials in a powder form followed by compression molding. The molded samples were characterized in terms of morphological (scanning electron microscopy), physical (density and hardness) and mechanical (tension, flexion and impact) properties. The results showed a decrease in tensile and flexural moduli and strengths with GTR due to its elastomeric nature. However, significant increases were observed on the tensile elongation at break (up to 167%) and impact strength (up to 131%) compared to the neat PA6 matrix. Based on the results obtained, an optimum GTR content around 75% wt. was observed which represents a balance between high recycled rubber content and a sufficient amount of matrix to recover all the particles. These results represent a first step showing that a simple processing method can be used to produce low cost PA6/GTR compounds with a wide range of physical and mechanical properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.