In this work, we investigate the nonlinear absorption dynamics of Zn phthalocyanine in dimethyl sulfoxide (DMSO). We used single pulse and pulse train Z-scan techniques to determine the dynamics and absorption cross-sections of singlet and triplet states at 532 nm. The excited singlet state absorption cross-section was determined to be 3.2 times higher than the ground state one, giving rise to reverse saturable absorption. We also observed that reverse saturable absorption occurs from the triplet state, after its population by intersystem crossing, whose characteristic time was determined to be 8.9 ns. The triplet state absorption cross-section determined is 2.6 times higher than the ground state one. In addition, we used the white light continuum Z-scan to evaluate the singlet excited state spectrum from 450 to 710 nm. The results show two well-defined regions, one above 600 nm, where reverse saturable absorption is predominant. Below 600 nm, we detected a strong saturable absorption. A three-energy-level diagram was used to explain the experimental results, leading to the excited state absorption cross-section determination from 450 nm up to 710 nm.
This work reports on the effect of temperature on the two-photon absorption cross section of azoaromatic chromophores. A linear decrease in the two-photon absorption cross section with the temperature was observed for several azochromophores. This process was characterized by introducing a two-photon absorption thermal coefficient (ddelta/dT), whose typical values are approximately 2GM/degrees C for all the azochromophores studied here. Such an effect was attributed to thermal induced molecular conformation changes, described by the sum-over-states model and semiempirical calculations, which affect the molecular dipole moments. The characterization of the phenomenon reported here for other nonlinear materials can help in the design of specific applications using two-photon absorption.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.