High-frequency (HF) surface wave radar has been identified to be a gap-filling technology for Maritime Domain Awareness. Present SeaSonde HF radars have been designed to map surface currents but are able to track surface vessels in a dual-use mode. Rutgers and CODAR Ocean Sensors, Ltd., have collaborated on the development of vessel detection and tracking capabilities from compact HF radars, demonstrating that ships can be detected and tracked by multistatic HF radar in a multiship environment while simultaneously mapping ocean currents. Furthermore, the same vessel is seen simultaneously by the radar based on different processing parameters, mitigating the need to preselect a fixed set and thereby improving detection performance.
The Mona Passage is a major shipping lane to the Panama Canal and a key route for illegal traffic into the United States. We have emplaced two high-frequency radar (HFR) stations on the west coast of Puerto Rico intended to allow mapping of the ocean surface velocity field of the eastern Mona Passage and to explore its performance in vessel detection and tracking. The array provides coverage of the southeastern quadrant of the Passage extending west to Mona Island and north to Rincon. Hourly results are posted online in near-real time. To optimize our results, we twice measured the antenna beam patterns and applied these corrections to the resulting radial returns. To assess the basic capability of the Mona Passage HFR array to measure surface currents in this tropical environment, we undertook validation measurements, including repeated deployment of Lagrangian drifters, deployment of an acoustic Doppler current profiler, and comparison with modeled tidal currents. Our experimental measurements showed good agreement to both modeled and in situ data lending confidence to the area-wide surface current maps generated by this system. Repeated measurements showed limited temporal variability of antenna distortion patterns, demonstrating that these are in large part the product of the surrounding environment. Comparison between a numerical particle tracking algorithm and experimental Lagrangian trajectories showed mixed results, with better agreement during periods of low intrahour variability in current direction than during periods of rapid tidal reversal.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.