Mitochondrial fission and fusion are dynamic processes vital to mitochondrial quality control and the maintenance of cellular respiration. In dividing mitochondria, membrane scission is accomplished by a dynamin-related GTPase, DNM1L, that oligomerizes at the site of fission and constricts in a GTP-dependent manner. There is only a single previous report of DNM1L-related clinical disease: a female neonate with encephalopathy due to defective mitochondrial and peroxisomal fission (EMPF; OMIM #614388), a lethal disorder characterized by cerebral dysgenesis, seizures, lactic acidosis, elevated very long chain fatty acids, and abnormally elongated mitochondria and peroxisomes. Here, we describe a second individual, diagnosed via whole-exome sequencing, who presented with developmental delay, refractory epilepsy, prolonged survival, and no evidence of mitochondrial or peroxisomal dysfunction on standard screening investigations in blood and urine. EEG was nonspecific, showing background slowing with frequent epileptiform activity at the frontal and central head regions. Electron microscopy of skeletal muscle showed subtle, nonspecific abnormalities of cristal organization, and confocal microscopy of patient fibroblasts showed striking hyperfusion of the mitochondrial network. A panel of further bioenergetic studies in patient fibroblasts showed no significant differences versus controls. The proband's de novo DNM1L variant, NM_012062.4:c.1085G4A; NP_036192.2:p. (Gly362Asp), falls within the middle (oligomerization) domain of DNM1L, implying a likely dominant-negative mechanism. This disorder, which presents nonspecifically and affords few diagnostic clues, can be diagnosed by means of DNM1L sequencing and/or confocal microscopy.
Spinal muscular atrophy with progressive myoclonic epilepsy (SMA-PME) is a recently delineated, autosomal recessive condition caused by rare mutations in the N-acylsphingosine amidohydrolase 1 (acid ceramidase) ASAH1 gene. It is characterized by motor neuron disease followed by progressive myoclonic seizures and eventual death due to respiratory insufficiency. Here we report an adolescent female who presented with atonic and absence seizures and myoclonic jerks and was later diagnosed as having myoclonic-absence seizures. An extensive genetic and metabolic work-up was unable to arrive at a molecular diagnosis. Whole exome sequencing (WES) identified two rare, deleterious mutations in the ASAH1 gene: c.850G>T;p.Gly284X and c.456A>C;p.Lys152Asn. These mutations were confirmed by Sanger sequencing in the patient and her parents. Functional studies in cultured fibroblasts showed that acid ceramidase was reduced in both overall amount and enzymatic activity. Ceramide level was doubled in the patient's fibroblasts as compared to control cells. The results of the WES and the functional studies prompted an electromyography (EMG) study that showed evidence of motor neuron disease despite only mild proximal muscle weakness. These findings expand the phenotypic spectrum of SMA-PME caused by novel mutations in ASAH1 and highlight the clinical utility of WES for rare, intractable forms of epilepsy.
We sought to determine public perception surrounding Tourette syndrome through viewers' responses to videos on YouTube. The top 20 videos on YouTube for search terms Tourette's, Tourette's syndrome, Tourette syndrome and tics were selected. The portrayal of Tourette syndrome was assessed as positive, negative, or neutral. Top 10 comments for each video were graded as "sympathetic," "neutral," or "derogatory." A total of 14 970 hits were obtained and 41 videos were retained, with an average of 590 113 views (1369 to 13 747 069) and 1761 comments (0 to 35 241). Twenty-two percent of videos retained portrayed Tourette syndrome negatively, 20% were neutral and 59% positive. Negative portrayals were significantly associated with more views (Spearman correlation rho = -.46, P =.003) and comments (Spearman correlation rho = -.47, P = .002). Although excellent examples of Tourette syndrome are available on YouTube, the popularity of negative portrayals may reinforce existing stigma in society.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.