Although long-chain aliphatic hydrocarbons are documented in meteorites, their origin is poorly understood. A key question is whether they are pristine or a byproduct of terrestrial alteration? To understand if these long-chain hydrocarbons are indigenous, it will be important to explore their thermodynamic and mechanical stability at conditions experienced by extraterrestrial objects during atmospheric entry and passage. Extreme pressures and temperatures experienced by meteorites are likely to alter the molecular organization of these long-chain hydrocarbons. These structural changes associated with extreme conditions are often documented via laboratory-based Raman spectroscopic measurements. So far, Raman spectroscopic measurements have investigated the effect of static compression on the aliphatic hydrocarbons. The effect of temperature on the structural changes remains poorly explored. To bridge this gap, in this study, we have explored the behavior of two aliphatic hydrocarbons at simultaneously high pressures and temperatures. We have used a resistively heated diamond anvil cell. On compression to moderate pressures, the appearance of new vibrational modes in the low-energy region confirms prior studies and is related to the bending of the linear chains. Upon heating to ∼220 °C, we note that the new low-energy mode undergoes softening. The mode softening is likely due to the combination of unbending of the alkane chain and mode anharmonicity.
The Allatoona thrust fault in the southernmost hinterland of the Appalachian Blue Ridge-Piedmont megathrust sheet is among the latest structures in the kinematic sequence of events along the west flank of the orogen. It is an out-of-sequence, craton-directed thrust fault that cuts metamorphic isograds and earlier thrusts, and it has a nearly linear trace of ≥280 km, making it one of the major thrust faults in the orogen. On the northwest, the fault cuts Pennsylvanian or younger(?) regional cross antiforms that cause significant orogenic curvature of older underlying thrust sheets and is likely Permian in age. To the southeast, however, units within the fault hanging wall maintain a nearly constant width resulting in a significant change in the regional structural architecture of the orogen. In the central segment of the fault, where it marks the western/eastern Blue Ridge domain boundary, a ~20 km-long eyelid window (Mulberry Rock window) framed by three amphibolite facies thrust sheets overlying the greenschist facies Talladega belt allochthon, allows a 3-D view into the structural architecture, kinematics, and trajectories of the regional thrusts. Two earlier thrusts within the window (Mulberry Rock and Burnt Hickory Ridge thrusts, with a combined minimum horizontal net slip component of 27 km) are cut by the Allatoona fault, which is a ~15 m-wide high strain zone with top-to-the-northwest displacement, and a >17.2 km horizontal net slip vector. Structural branch points between the Allatoona and Mulberry Rock thrusts indicate that the Mulberry Rock allochthon is a large north-trending horse beneath the Allatoona fault, centered on the Mulberry Rock window, which is likely the result of oblique ramp thrusting over the massive Mulberry Rock Gneiss. The Allatoona fault cuts down obliquely into the tectonostratigraphy progressively deeper both to the northeast and northwest, locally approaching underlying foreland thrust sheets, and cutting older regional structures. To the northeast, the Allatoona fault lies at the base of the Dahlonega gold belt, becoming an internal eastern Blue Ridge thrust at Dawsonville, Georgia. Although that sequence extends another 120 km into North Carolina, continuation of the Allatoona fault that additional distance is in debate. Regardless, the Allatoona is one of the kinematically latest and longest faults in the southern Appalachian orogen.
BackgroundPersonality traits are known factors that may influence levels of physical activity and other healthy lifestyle measures and behaviors that ultimately lead to health problems later in life.Participants and procedureThe aim of this study was to examine the association between personality traits (HEXACO) and levels of physical activity and resting heart rate (RHR) – measured using Fitbits, BMI, and a self-reported whole-person healthy lifestyle score for N = 2580 college students. Data were collected and analyzed for students enrolled in a University Success type course from August 2017 to May 2021. The relationships between HEXACO personality traits and various physical activity and healthy lifestyle behaviors were analyzed by building several multiple regression models using R version 4.0.2.ResultsIn general, students who are extraverted were more physically active and students who are more open to experience had a higher RHR, even when controlling for gender. Females and males however had different profiles as to how personality influenced physical activity and other health-related measures. Male extraverts with high negative emotionality scores tend to be more physically active, whereas females tend to be more physically active when they were high in extroversion and conscientiousness, and low in openness to experience. BMI values were higher for female participants with high honesty-humility and low agreeableness and conscientiousness scores. Females also had a lower RHR for high honesty-humility and emotionality and low conscientiousness scores.ConclusionsPersonality can influence levels of physical activity, RHR, and BMI. This is especially true of women. Being aware of one’s personality and the relationship of personality traits to levels of physical activity and other measures of leading a healthy lifestyle can be beneficial in determining strategies to improve long-term health outcomes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.