Mortality from influenza infections continues as a global public health issue, with the host inflammatory response contributing to fatalities related to the primary infection. Based on Ordinary Differential Equation (ODE) formalism, a computational model was developed for the in-host response to influenza A virus, merging inflammatory, innate, adaptive and humoral responses to virus and linking severity of infection, the inflammatory response, and mortality. The model was calibrated using dense cytokine and cell data from adult BALB/c mice infected with the H1N1 influenza strain A/PR/8/34 in sublethal and lethal doses. Uncertainty in model parameters and disease mechanisms was quantified using Bayesian inference and ensemble model methodology that generates probabilistic predictions of survival, defined as viral clearance and recovery of the respiratory epithelium. The ensemble recovers the expected relationship between magnitude of viral exposure and the duration of survival, and suggests mechanisms primarily responsible for survival, which could guide the development of immunomodulatory interventions as adjuncts to current anti-viral treatments. The model is employed to extrapolate from available data survival curves for the population and their dependence on initial viral aliquot. In addition, the model allows us to illustrate the positive effect of controlled inflammation on influenza survival.
The seriousness of pneumococcal pneumonia in mouse models has been shown to depend both on bacterial serotype and murine strain. We here present a simple ordinary differential equation model of the intrahost immune response to bacterial pneumonia that is capable of capturing diverse experimentally determined responses of various murine strains. We discuss the main causes of such differences while accounting for the uncertainty in the estimation of model parameters. We model the bacterial population in both the lungs and blood, the cellular death caused by the infection, and the activation and immigration of phagocytes to the infected tissue. The ensemble model suggests that inter-strain differences in response to streptococcus pneumonia inoculation reside in the strength of nonspecific immune response and the rate of extrapulmonary phagocytosis.
BackgroundAgent based models (ABM) are useful to explore population-level scenarios of disease spread and containment, but typically characterize infected individuals using simplified models of infection and symptoms dynamics. Adding more realistic models of individual infections and symptoms may help to create more realistic population level epidemic dynamics.MethodsUsing an equation-based, host-level mathematical model of influenza A virus infection, we develop a function that expresses the dependence of infectivity and symptoms of an infected individual on initial viral load, age, and viral strain phenotype. We incorporate this response function in a population-scale agent-based model of influenza A epidemic to create a hybrid multiscale modeling framework that reflects both population dynamics and individualized host response to infection.ResultsAt the host level, we estimate parameter ranges using experimental data of H1N1 viral titers and symptoms measured in humans. By linearization of symptoms responses of the host-level model we obtain a map of the parameters of the model that characterizes clinical phenotypes of influenza infection and immune response variability over the population. At the population-level model, we analyze the effect of individualizing viral response in agent-based model by simulating epidemics across Allegheny County, Pennsylvania under both age-specific and age-independent severity assumptions.ConclusionsWe present a framework for multi-scale simulations of influenza epidemics that enables the study of population-level effects of individual differences in infections and symptoms, with minimal additional computational cost compared to the existing population-level simulations.Electronic supplementary materialThe online version of this article (doi:10.1186/1471-2458-14-1019) contains supplementary material, which is available to authorized users.
The pandemic outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has quickly spread worldwide, creating a serious health crisis. The virus is primarily associated with flu-like symptoms but can also lead to severe pathologies and death. We here present an ordinary differential equation model of the intrahost immune response to SARS-CoV-2 infection, fitted to experimental data gleaned from rhesus macaques. The model is calibrated to data from a nonlethal infection, but the model can replicate behavior from various lethal scenarios as well. We evaluate the sensitivity of the model to biologically relevant parameters governing the strength and efficacy of the immune response. We also simulate the effect of both anti-inflammatory and antiviral drugs on the host immune response and demonstrate the ability of the model to lessen the severity of a formerly lethal infection with the addition of the appropriately calibrated drug. Our model emphasizes the importance of tight control of the innate immune response for host survival and viral clearance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.