The particulate matter PM10 concentrations have been impacting hospital admissions due to respiratory diseases. The air pollution studies seek to understand how this pollutant affects the health system. Since prediction involves several variables, any disparity causes a disturbance in the overall system, increasing the difficulty of the models’ development. Due to the complex nonlinear behavior of the problem and their influencing factors, Artificial Neural Networks are attractive approaches for solving estimations problems. This paper explores two neural network architectures denoted unorganized machines: the echo state networks and the extreme learning machines. Beyond the standard forms, models variations are also proposed: the regularization parameter (RP) to increase the generalization capability, and the Volterra filter to explore nonlinear patterns of the hidden layers. To evaluate the proposed models’ performance for the hospital admissions estimation by respiratory diseases, three cities of São Paulo state, Brazil: Cubatão, Campinas and São Paulo, are investigated. Numerical results show the standard models’ superior performance for most scenarios. Nevertheless, considering divergent intensity in hospital admissions, the RP models present the best results in terms of data dispersion. Finally, an overall analysis highlights the models’ efficiency to assist the hospital admissions management during high air pollution episodes.
This work deals with metaheuristic optimization algorithms to derive the best parameters for the Gaussian Adaptive PID controller. This controller represents a multimodal problem, where several distinct solutions can achieve similar best performances, and metaheuristics optimization algorithms can behave differently during the optimization process. Finding the correct proportionality between the parameters is an arduous task that often does not have an algebraic solution. The Gaussian functions of each control action have three parameters, resulting in a total of nine parameters to be defined. In this work, we investigate three bio-inspired optimization methods dealing with this problem: Particle Swarm Optimization (PSO), the Artificial Bee Colony (ABC) algorithm, and the Whale Optimization Algorithm (WOA). The computational results considering the Buck converter with a resistive and a nonlinear load as a case study demonstrated that the methods were capable of solving the task. The results are presented and compared, and PSO achieved the best results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.