Invasive plants are non-native species that can spread rapidly, leading to detrimental economic, ecological, or environmental impact. In aquatic systems such as the Sacramento-San Joaquin River Delta in California, USA, management agencies use manned aerial vehicles (MAV) imaging spectroscopy missions to map and track annual changes in invasive aquatic plants. Advances in unmanned aerial vehicles (UAV) and sensor miniaturization are enabling higher spatial resolution species mapping, which is promising for early detection of invasions before they spread over larger areas. This study compared maps made from UAV-based imaging spectroscopy with the manned airborne imaging spectroscopy-derived maps that are currently produced for monitoring invasive aquatic plants in the Sacramento-San Joaquin Delta. Concurrent imagery was collected using the MAV mounted HyMap sensor and the UAV mounted Nano-Hyperspec at a wetland study site and classification maps generated using random forest models were compared. Classification accuracies were comparable between the Nano- and HyMap-derived maps, with the Nano-derived map having a slightly higher overall accuracy. Additionally, the higher resolution of the Nano imagery allowed detection of patches of water hyacinth present in the study site that the HyMap could not. However, it would not be feasible to operate the Nano as a replacement to HyMap at scale despite its improved detection capabilities due to the high costs associated with overcoming area coverage limitations. Overall, UAV-based imaging spectroscopy provides comparable or improved capability, and we suggest it could be used to supplement existing monitoring programs by focusing on target areas of high ecologic or economic priority.
Human-mediated IAS introductions, deliberate or unintentional, tend to be much faster than natural processes (e.g., wind, animal; Theoharides and Dukes 2007; Hulme 2009; Pyšek et al. 2009; Seebens et al. 2017). Invasion pathways differ between taxa; intentional transport (escape and release) is most important for plants and vertebrates, while unintentional transport is more significant for invertebrates, algae, and microorganisms (Saul et al. 2017). Roads, tracks, and waterways create natural and artificial corridors for invasion, exposing ecosystems to invasion, particularly in emerging economies where development is rapid (Mortensen et al. 2009; Masters and Norgrove 2010). Globally, the continued expansion of tourism, air transport, and trade is dramatically heightening propagule pressure and subsequent invasion (Hulme 2015). Global environmental changes, particularly changes in climate and weather patterns, nutrient cycles, and land use, generally drive increasing invasions while also making invasion prevalence, impacts, and feedbacks to the Earth system less predictable (Bradley et al. 2010; Dukes and Mooney 1999). These same change processes can also alter IAS transport and introduction mechanisms, hindering monitoring and control (Hellmann et al. 2008; Walther et al. 2009) and making it more challenging to predict future spread. Moreover, these changes stress ecosystems and increase invasion success (Simberloff 2000). Climate and land use changes drive species range shifts, potentially creating new invasion hotspots (Bellard et al. 2013; Bradley et al. 2010) while decreasing invasion risk and increasing recovery potential in other regions (Allen and Bradley 2016). Thus, observing the geographic patterns of the spread of IAS is critical to understand their origins, pathways, and invasion processes on a changing planet.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.