Thermosensitive amphiphilic block copolymers self-assemble into micelles above their lower critical solution temperature in water, however, the micelles generally display mediocre physical stability. To stabilize such micelles and increase their loading capacity for chemotherapeutic drugs, block copolymers with novel aromatic monomers were synthesized by free radical polymerization of N-(2-benzoyloxypropyl methacrylamide (HPMAm-Bz) or the corresponding naphthoyl analogue (HPMAm-Nt), with N-(2-hydroxypropyl) methacrylamide monolactate, using a polyethylene glycol based macroinitiator. The critical micelle temperatures and critical micelle concentrations decreased with increasing the HPMAm-Bz/Nt content. The micelles of 30-50 nm were prepared by heating the polymer aqueous solutions from 0 to 50 °C and were colloidally stable for at least 48 h at pH 7.4 and 37 °C. Paclitaxel and docetaxel encapsulation was performed by mixing drug solutions in ethanol with polymer aqueous solutions and heating from 0 to 50 °C. The micelles had a drug loading capacity up to 34 wt % for docetaxel, which is among the highest loadings reported for polymeric micelles, with loaded micelle sizes ranging from 60 to 80 nm. The micelles without aromatic groups almost completely released loaded paclitaxel in 10 days, whereas the HPMAm-Bz/Nt containing micelles released 50% of the paclitaxel at the same time, which showed a better retention for the drug of the latter micelles. (1)H solid-state NMR spectroscopy data are compatible with π-π stacking between aromatic groups. The empty micelles demonstrated good cytocompatibility, and paclitaxel-loaded micelles showed high cytotoxicity to tumor cells. In conclusion, the π-π stacking effect introduced by aromatic groups increases the stability and loading capacity of polymeric micelles.
The therapeutic use of nucleic acids relies on the availability of sophisticated delivery systems for targeted and intracellular delivery of these molecules. Such a gene delivery should possess essential characteristics to overcome several extracellular and intracellular barriers. Peptides offer an attractive platform for nonviral gene delivery, as several functional peptide classes exist capable of overcoming these barriers. However, none of these functional peptide classes contain all the essential characteristics required to overcome all of the barriers associated with successful gene delivery. Combining functional peptides into multifunctional peptide vectors will be pivotal for improving peptide-based gene delivery systems. By using combinatorial strategies and high-throughput screening, the identification of multifunctional peptide vectors will accelerate the optimization of peptide-based gene delivery systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.