Citrullination is present in a wide range of inflammatory tissues, suggesting that this process is inflammation dependent rather than disease dependent.
Objective. Treatment of rheumatoid arthritis (RA) with tumor necrosis factor (TNF) antagonists is highly effective, but their mechanisms of action are not completely clear. Since anti-TNF therapy induces a decrease in synovial cellularity, this study focused on the modulation of RA synovial apoptosis following treatment with either soluble TNF receptor (etanercept) or TNF chimeric monoclonal antibody (infliximab).Methods. Apoptosis (TUNEL and active caspase 3 staining) and cell surface markers were evaluated by immunohistochemistry in synovial biopsy samples obtained before and after 8 weeks of treatment with etanercept (12 patients) or infliximab (9 patients). We also determined by flow cytometry the in vitro effect of etanercept and infliximab on apoptosis of RA mononuclear cells derived from the synovial fluid (SF) and peripheral blood (PB).Results. Eight weeks of treatment with etanercept and with infliximab significantly increased synovial apoptosis. This change was accompanied by a significant decrease in the synovial monocyte/macrophage population. The decrease in lymphocyte numbers did not reach statistical significance. In vitro, 24 hours of incubation with either etanercept or infliximab induced apoptosis of the SF monocyte/macrophage population. PB monocyte/macrophages were less susceptible to anti-TNF-mediated apoptosis. No changes in the rate of apoptosis were observed in the lymphocyte population derived from either SF or PB.Conclusion. In RA patients, both etanercept and infliximab are able to induce cell type-specific apoptosis in the monocyte/macrophage population. This suggests a potential pathway that would account for the diminished synovial inflammation and the decreased numbers of synovial macrophages evident after TNF blockade.
Objective. Microsomal prostaglandin E synthase 1 (mPGES-1) catalyzes the formation of PGE 2 from cyclooxygenase-derived PGH 2 . Microsomal PGES-1 is induced by proinflammatory cytokines and is strongly linked to conditions that result in high PGE 2 biosynthesis. PGE 2 contributes to the pathogenesis of rheumatoid arthritis (RA), acting as a mediator of inflammation and promoting bone destruction. Induction of mPGES-1 in rheumatoid synoviocytes by proinflammatory cytokines has been demonstrated in vitro, indicating an important role in RA pathogenesis. Recent studies using mPGES-1-deficient mice demonstrated the importance of this gene in chronic inflammation. The aim of this study was to investigate the expression and localization of mPGES-1 in synovial biopsy specimens obtained from patients with RA.Methods. Synovial tissue samples from 24 patients with RA were obtained, and immunohistologic analysis was performed using polyclonal antibodies against mPGES-1. Double immunofluorescence staining was performed with antibodies to CD3, CD19, CD20, CD68, CD163, and prolyl 4-hydroxylase.Results. Intracellular mPGES-1 staining was observed in synovial membranes from all of the RA patients studied. Specifically, strong expression of mPGES-1 was detected in synovial lining cells. In sublining mononuclear and fibroblast-like cells, the extent of mPGES-1 staining was less than that in the synovial lining cells. In some patients, positive staining was observed in endothelial cells. With the double immunofluorescence technique, mPGES-1 production was detected in synovial macrophages and fibroblasts, while mPGES-1 expression was not observed in lymphocytes.Conclusion. The demonstration of mPGES-1 expression in synovial tissues from patients with RA suggests a role for mPGES-1 in the RA disease process. Microsomal PGES-1 might be a potential new target for treatment strategies to control PGE 2 synthesis in patients with RA, without the systemic side effects associated with cyclooxygenase inhibitors.
In RA patients, etanercept therapy down-regulates serum levels of MMP-3 and MMP-1 and the ratio between MMPs and TIMP-1. This may be an important mechanism for the prevention of future development of joint damage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.