Mechanisms by which Treg functions modulate the immune response to tumors are becoming further understood. However, specific markers to tumor-specific/induced Tregs are yet to be clearly identified, which is a major limitation in optimizing strategies to specifically target Tregs in cancer. Despite this, strategies aimed at modulating Tregs in patients are providing some early encouraging results supporting the overall concept and indicating that further studies are clearly warranted.
The genetic modification of peripheral blood lymphocytes using retroviral vectors to redirect T cells against tumor cells has been recently used as a means to generate large numbers of antigen-specific T cells for adoptive cell therapy protocols. However, commonly used retroviral vector-based genetic modification requires T cells to be driven into cell division; this potent mitogenic stimulus is associated with the development of an effector phenotype that may adversely impact upon the long-term engraftment potential and subsequent antitumor effects of T cells. To investigate whether the cytokines used during culture impact upon the engraftment potential of gene-modified T cells, a humanized model employing T cells engrafted with a MART-1-specific T cell receptor adoptively transferred into NOD/Shi-scid IL-2rγ(-/-) (NSG) immune-deficient mice bearing established melanoma tumors was used to compare the effects of the common γ chain cytokines IL-2, IL-7, and IL-15 upon gene-modified T cell activity. MART-1-specific T cells cultured in IL-7 and IL-15 demonstrated greater relative in vitro proliferation and viability of T cells compared with the extensively used IL-2. Moreover, the IL-15 culture prolonged the survival of animals bearing melanoma tumors after adoptive transfer. However, the combination of IL-7 and IL-15 produced T cells with improved engraftment potential compared with IL-15 alone; however, a high rate of xenogeneic graft-versus-host disease prevented the identification of a clear improvement in antitumor effect of these T cells. These results clearly demonstrate modulation of gene-modified T cell engraftment in the NSG mouse, which supports the future testing of the combination of IL-7 and IL-15 in adoptive cell therapy protocols; however, this improved engraftment is also associated with the long-term maintenance of xenoreactive T cells, which limits the ultimate usefulness of the NSG mouse model in this situation.
BackgroundAdoptive T cell immunotherapy (ATCT) for cancer entails infusing patients with T cells that recognise and destroy tumour cells. Efficient engraftment of T cells and persistence in the circulation correlate with favourable clinical outcomes. T cells of early differentiation possess an increased capacity for proliferation and therefore persistence, using these cells for ATCT could therefore lead to improved clinical outcomes.MethodWe describe a method to enrich T cells of early differentiation status using paramagnetic beads and antibodies targeting cells expressing C-C motif chemokine receptor 7 (CCR7).ResultsSelection of cells expressing CCR7 enriches T cells of bearing markers of early differentiation status. This was validated through analysis of an array of surface markers and an observed reduction in effector cell functions ex vivo. CCR7 selection resulted in dramatic 83.6 and 137 fold increases in circulating levels of CD4 and CD8 T cells respectively compared to non-sorted T cells 3 weeks after adoptive transfer to NSG mice. We observed no significant difference in the engraftment levels of CCR7 or CD62L selected cells in the NSG mouse model. Comparison of cells ex vivo, however, suggests CCR7 selection is superior to CD62L selection in enriching T cells of early differentiation status.ConclusionsCCR7 selection offers a means to enrich T cells of early differentiation status for ACTC. Together our data suggests that these T cells are likely to display enhanced engraftment and persistence in patients in vivo and could therefore improve therapeutic efficacy of ACTC.Electronic supplementary materialThe online version of this article (doi:10.1186/s40425-017-0216-7) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.